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Abstract—Cloud data centers are difficult to manage because
providers have no knowledge of what applications are being
run by customers or how they interact. As a consequence,
current clouds provide minimal automated management func-
tionality, passing the problem on to users who have access to
even fewer tools since they lack insight into the underlying
infrastructure. Ideally, the cloud platform, not the customer,
should be managing data center resources in order to both
use them efficiently and provide strong application-level per-
formance and reliability guarantees. To do this, we believe
that clouds must become “distibuted-aware” so that they can
deduce the overall structure and dependencies within a client’s
distributed applications and use that knowledge to better guide
management services. Towards this end we are developing a
light-weight topology detection system that maps distributed
applications and a service classification algorithm that can
determine not only overall application types, but individual
VM roles as well.
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I. INTRODUCTION

Cloud Computing has radically changed how businesses
run their applications by simplifying deployment and lower-
ing the cost of massively scalable applications. A key prin-
ciple in many cloud computing platforms is their reliance on
server virtualization to provide an isolated resource partition
for a user to run her applications in. Using virtualization
grants the cloud a convenient abstraction since the virtual
machines (VMs) of all customers can be treated identically.
However, this leaves the cloud provider with little or no
knowledge about what is running inside a VM or how
different VMs interact.

The applications running inside both public and private
data centers are growing in size and complexity. Even a
relatively straightforward web application is likely to be
composed of multiple interacting service components: a
front-end web server, a cache, an application server, and a
database, each of which may be replicated to support higher
demand or reliability. The result is a complicated distributed
application that may exhibit performance bottlenecks or
consistency requirements between components.

The tendency of current cloud providers to treat each VM
as a black box ignores this complexity, which can easily
lead to inefficient resource allocations or worse, dangerous
reliability issues. A client may create three VMs: one for a
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Figure 1: TopClass attempts to classify applications based on their
topology characteristics.

web front-end and two for a replicated database. The cloud,
not knowing anything about what these VMs are doing, may
make decisions such as placing the VMs several network
hops away from each other even though their performance
would be improved by placing them nearby. Alternatively,
the cloud might blindly place the two database replica VMs
together on the same physical server, not realizing that the
customer’s goal was to use redundancy to limit the effect of
a server crash. These issues arise because cloud platforms
are unaware of how VMs are interconnected. Instead, we
believe that cloud platforms need to be designed to be ap-
plication agnostic, yet distributed-aware—they must be able
to understand the structure and dependencies of distributed
applications without requiring application-specific support.

As a step towards the goal of distributed-aware cloud
platforms, we are developing TopClass. TopClass employs
a hypervisor-based network monitoring system to track
the connections between different VMs and automatically
determine their network topologies. While topology alone
provides some useful information about how components
of a distributed application interact, TopClass takes this a
step further to also classify each VM based on the type of
service it is most likely running. The intuition behind our
approach is that different classes of data center applications
have very different topologies. For example, Fig. 1 illustrates
possible topologies for three types of applications found in
a data center: a web application, a Hadoop cluster, and an
online gaming server. Each of these services has distinct
topology characteristics. While there are many different web
applications with slight variations on this basic topology
(e.g., more web caches or database replicas), a multi-tier
web application still should appear more similar to other
web applications than to an application of a completely
different type. TopClass uses graph similarity algorithms
to group together applications based on their similarity to
a service class template [1–5]. TopClass can then provide
this information to performance or reliability management
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Figure 2: TopClass uses network flow information to build a graph representing each application. The graphs are represented as adjacency
matrices, which can be compared to service templates to characterize the components that make up each application.

systems.
In this paper we describe our vision of distributed-

aware cloud platforms and present our preliminary work
on building TopClass. We have built a prototype system
that can monitor network traffic in the Xen hypervisor
without modifying hypervisor itself and have devised a set
of efficient algorithms that can determine network topology
and classify distributed applications based on their structure.
We believe that this type of information system will be
crucial for developing more automated cloud platforms that
can provide application-level guarantees without requiring
application-specific knowledge.

II. THE NEED FOR DISTRIBUTED-AWARE CLOUDS

Today’s clouds simply rent VMs with fixed sets of
resources, and leave individual customers responsible for
managing and protecting their applications. Some clouds
offer simple auto-scaling tools, but these can have limited
use for multi-tier or distributed applications. Here we present
the limitations of current approaches and then describe
our vision of distributed-aware clouds that use inferred
knowledge of application characteristics to better manage
both cloud resources and customer performance.

One of the largest cloud resource automation tools is
Amazon EC2’s Auto Scaling feature that can automatically
add or remove instances based on any of the metrics pro-
vided by its CloudWatch monitoring service. For example,
it is possible to set rules such as “create a new VM if
the average CPU utilization of a group of VMs exceeds
70% or the average latency exceeds 5 seconds”. While
this can be effective for some simple applications, these
types of rules only make sense for applications that are
composed of replicated VMs all performing the same task—
if a customer is running a multi-tier web application they
will need to carefully configure such rules for each tier
individually. Prior research has shown that this type of ad-
hoc resource management is far less effective than a cohesive
resource manager that can detect bottlenecks across tiers
and attempt to resolve them in an unified way [6, 7]. As
a further limitation, Amazon only supports latency based
rules for tiers that are directly connected to an instance of
their Amazon Load Balancing service, which typically will
only be the front-end of the application.

Research prototypes have brought us closer to the goal
of a fully automated cloud, but they typically require
support from applications [8], or they fail to account for

the distributed nature of modern data center applications.
As a result, there is a large gap between state-of-the-art
cloud platforms and the flexible, but self-managing cloud
infrastructures that companies would like to use.

Fig. 1 illustrates three sample classes of data center
applications: a multi-tier web service, hadoop, and an online
game. Each has a distinct set of performance and reliability
requirements, but each also has a fairly unique network
topology. Current clouds would view each of the VMs that
make up these applications individually, or focus on the hosts
they reside on when doing resource management. Instead,
a distributed-aware cloud should be able to understand the
relations between tiers to determine, for example, whether
a web server’s performance could be better improved by
adding a new caching node or a new database replica.
Research has demonstrated that such bottleneck detection
and “what-if” analysis can be performed if the management
layer has access to overall topology and server characteris-
tics [6, 7], but current clouds do not have this information.

Fig. 2 shows a high level picture of how TopClass tries
to provide clouds with the information they need to make
these decisions. We first monitor network traffic to build an
adjacency matrix of links between VMs. This is then fed to
a topology discovery system that determines how VMs are
connected as a graph. From this connectivity information,
TopClass can classify applications based on their overall
service type. Finally, the nodes within an application are
annotated with a guess of what service they are running.

The alternative to automatically mapping applications is
to require individual cloud customers to specify more details
about their applications [9]. We believe this is a poor
substitute for a purely automated solution, which would not
only reduce sysadmin duties, but could also dynamically
update itself as applications change. Further, giving direct
placement control to users may expose proprietary infor-
mation about the cloud’s architecture and limits the cloud
provider’s own ability to maximize efficiency.

III. DISCOVERING APPLICATION TOPOLOGIES

We are developing TopClass, a system that provides cloud
platforms with information about the applications running
within them by monitoring VM communication to map
application topology.

A. Monitoring Network Flows
TopClass’s first task is to passively observe network traffic

to determine the topology of distributed applications running
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Figure 3: All sent or received network packets pass through the
NF IP FORWARD filter, allowing TopClass to monitor traffic.

in the data center [10]. Towards this end we have built a
low-overhead network monitoring system that resides in the
hypervisor of each data center server. Since the hypervisor is
typically involved in all network operations performed by a
VM, we are able to intercept incoming and outgoing packets
to each VM and track what other VMs in the data center it
is communicating with.

Our prototype of TopClass monitors this network traf-
fic by using the Linux netfilter callbacks provided by
Xen’s Domain-0. Fig. 3 shows the network packet flow
in the Xen architecture with netfilter interfaces for both
sent and received messages. By examining the packets
that pass through the forward netfilter table we can
capture all packets sent to or from any guest VM on
the host, including traffic between co-located VMs. Top-
Class can record information about each packet as a tuple:
(timestamp, src IP, src port, dest IP, dest port), or it
can aggregate this information over a time period and report
the volume of traffic sent over each connection. While we
only use the graph connectivity in this work, all other
information should also be used to increase the reliability
of the results.

Fig. 4 shows the level of overhead added by our network
monitoring system. To demonstrate the worst case overhead,
we have our system intercept all packets; in practice we
expect that we can get a similar level of information while
sampling only a small fraction of the total traffic. Fig. 4(a)
shows that the time to transfer a 1GB file has only a small
increase when sending to a VM on a different server (exter-
nal) or to another VM on the same host (internal). Fig. 4(b)
shows the extra system CPU time spent on monitoring, and
the reduction in network throughput. We believe that these
overheads are reasonable since TopClass will only need to
periodically enable the monitoring system to gather data.

Traffic to or from IPs that are external to the cloud data
center is ignored by TopClass because our focus is on under-
standing the topology of VMs that make up the cloud-based
distributed application. However, we do annotate nodes that
are actively communicating with external IPs because this
allows for an important optimization in our graph similarity
algorithm discussed in Section IV.
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Figure 4: (a) Data Transmission Overhead when sending 1GB file;
(b) CPU, and In- and Out-Network Performance when total number
of packets is 354,620, and peak memory size used in TopClass
module is 369KB.

B. Mapping Application Topology

TopClass attempts to map the data center as a directed
graph G = (V,E), where V is a set of vertices (nodes or
virtual machines) and E is a set of edges (number of packets
sent between two VMs). Within this graph, a maximal
induced subgraph (a.k.a. strongly connected component)
si = (Vi, Ei) represents application group i, a set of virtual
machines collaborating together to provide a service.

We want to find all distributed application groups S =
{s1, s2, ..., sn}, where n is the number of groups, each of
which is a set of at least two strongly connected nodes. To do
this, TopClass uses Tarjan’s algorithm [11], which is based
on depth first search (DFS). The vertices are indexed as they
are traversed by DFS procedure. While returning from the
recursion of DFS, every vertex V gets assigned a vertex L as
a representative. L is a vertex with the least index that can be
reached from V . Nodes with the same representative must be
located in the same strongly connected component. Tarjan’s
algorithm is a modified depth first search, hence it can ef-
ficiently map the data center with asymptotic complexity of
only O(|V |+|E|). We currently gather this data and compute
these topologies on a centralized server; however, we are
also considering a distributed approach where the physical
servers hosting VMs with links between them collaborate
to determine the topology graphs of their applications in a
distributed fashion.

IV. SERVICE CLASSIFICATION

After mapping the topologies of distributed applications
running within the cloud, TopClass next attempts to classify
each application and component VM. The simplest way to
determine a service type for a VM would be to examine
the port numbers it uses and match them against a list of
common applications. However, this approach will not work
if customers use custom port numbers, and it requires the
cloud administrators to keep track of all common applica-
tions and their typical ports. Further, one server may often
use multiple ports for a variety of services, so it is non-
trivial to determine an overall application type based purely
on ports. Therefore, we propose a graph similarity based
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algorithm which can classify applications even without this
information.

A. Classifying Services

In graph theory, the graph isomorphism problem deals
with determining if two graphs are structurally equivalent. In
order to classify graphs based on their similarity (rather than
equality) to other applications, we need to relax this problem
because the topologies of multi-tier web applications, for
example, are not always isomorphic: scalability or reliability
issues might affect the overall structure by replicating a sub-
set of the graph’s nodes. The Maximum Common Subgraph
(MCS) algorithm provides a way to calculate “distances”
between graphs by finding a maximum possible isomorphic
graphs from two graphs [3]. Intuitively, by finding the MCS
of an unknown distributed application and several known
templates, we can determine which of the templates the
service is most similar to.

However, the MCS problem is known to be NP-Hard [3],
so the complexity of measuring the similarity of many
different graphs in a data center may become intractable.
Fortunately, TopClass is able to optimize this problem by
exploiting annotations made to each graph about the gate-
way nodes that communicate with external IPs. Using this
information allows us to “orient” each graph based on where
incoming requests arrive, simplifying MCS to a polynomial
time algorithm.

Definition 1. Given two graphs g1 and g2, and the gateway
nodes of each graph wg1 = {w1

g1 , ..., w
ḡ1
g1} and wg2 =

{w1
g2 , ..., w

ḡ2
g2}, where ḡ1 and ḡ2 are the number of gateway

nodes of g1 and g2, respectively, graph g is a MCS of g1

and g2, denoted as g = mcs(g1, g2), if and only if the
gateway nodes match [wi

g = wi
g1 = wi

g2 ]ḡi=1 and there
is no other common subgraph g′ of g1 and g2 such that
|E(g′)| > |E(g)|.

Definition 2. The distance between two graphs g1 and g2

is d(g1, g2) = |E(g1)|+ |E(g2)| − 2× |E(mcs(g1, g2))|.

To determine the service type graph, t∗, that is most
similar to unknown application graph g, TopClass simply
must find the template with the smallest distance score:

t∗ = argmin
t∈T

{d(g, t)}. (1)

(a) Star (b) 1-D Star

(c) Star w/off shoot (d) Chain

Figure 6: Four sample topologies from a public university data
center network.

Currently, TopClass assumes access to a set of repre-
sentative service type graphs, T = {t1, t2, ..., tM}, where
M is the number of representative service types. These
graphs represent distributed application classes (e.g., those
in Fig. 1) that the cloud provider would like to manage in a
particular way. In our ongoing work we hope to remove this
assumption so the cloud can automatically determine a set
of template service classes by clustering application graphs.

B. Labeling Components

Now that each distributed application has a service type
assigned, each VM in the application needs to be labeled. We
assume that the service template graphs have been labeled
with the name or characteristics of each vertex; the task of
TopClass is to correlate the vertices in the new application
graph with the selected service template. The base idea of
this solution is that a node is characterized by its neighboring
nodes, so that the score of a pair is reinforced by the scores
of its neighbor’s pairs.

As an example, Fig. 5(a) shows the two graphs to com-
pare. The similarity between the node g3 from the distributed
application and the node t2 from the service template is
calculated as s(t2, g3) = s(t1, g1) + s(t1, g4) + s(t3, g2) +
s(t3, g5); the similarity of two nodes recursively depends
on the similarities of the neighbors on incoming edges
(g1, g4, t1) and those on outgoing edges (g2, g5, t3). Note that
since our focus is on graph structure, we use the adjacency
matrix representation of each graph in these calculations
to prevent differences in edge weights from biasing the
results [4].

TopClass attempts to estimate the similarity score matrix
M that represents the similarity between each pair of nodes
in the two graphs:



Table I: Statistics of Sample Topologies

Statistics \Topology Star 1-D Star Star w/off shoot Chain
service types 5 1 74 1
nodes 4 18 11 3
connections 3 17 17 4
avg degree 0.75 0.944 1.545 1.333
avg path length 1 1 2.136 1.333
max node degree 3 17 10 4
network diameter 1 1 4 2

M =

 s(t1, g1) ... s(tt̄, g1)
...

...
...
...

...
s(t1, gḡ) ... s(tt̄, gḡ)

 (2)

where ḡ and t̄ are the number of nodes in g and t. Since this
cannot be calculated directly, we use an iterative algorithm
that is a matrix analogue to the classical power method [12]
to compute a dominant eigenvector of a matrix.

Mk+1 =
(at ⊗ ag + aTt ⊗ aTg )Mk + d

||(at ⊗ ag + aTt ⊗ aTg )Mk + d||
. (3)

We start with a random initial similarity matrix M1 and
the adjacency matrix at ⊗ ag of the product graph t × g,
we iterate Equation (3) an even number of times until it
converges. When d > 0, it is guaranteed to converge [13].
When the similarity matrix M converges, each element of
the matrix tells how strong the relationship between two
nodes from two different graphs. Therefore, we map each
node from t to g to find an application type of each node.
Fig. 5(b) shows a converged similarity matrix from the
graphs in Fig. 5(a). As expected, it shows high similarity
between node 3 in g and node 2 in t.

V. SAMPLE TOPOLOGIES

In order to see what real data center applications look
like, we have begun analyzing the data center network
packet traces released by Benson et al. [10]. We consider
a 5 minutes 45s portion of the trace and determine the
connectivity between hosts, ignoring links that send less than
345 packets. We use the algorithm described in Section III
to break the full data set into a set of subgraphs.

Fig. 6 shows four of the resulting subgraphs, and statistics
about each are shown in Table I. Each of these topologies
has its own characteristics. In our ongoing work we are
investigating how we can use clustering type algorithms
to determine which subgraphs in the trace make good
templates, and then how our service classification algorithms
can be used to identify overall topologies and individual
service components.

VI. RELATED WORK

Previous work has investigated the complexity of data
center networks and through in depth measurement stud-

ies [10]. We seek to expand on this by allowing data
center administrators to automatically determine topologies
and application types. Several related projects have used
network monitoring systems to find communication paths
within a distributed application. vPath [14] provides path
discovery by monitoring and recording thread and network
activities at runtime, such as which thread performs a send
or recv system call over certain TCP connection. vPath can
be implemented in either the OS kernel or a hypervisor.
Similarly, Sang et. al [15] deploy a TCP Tracer inside
each VM to track their fine grained interactions and report
performance statistics. Net-Cohort [16] uses a two-step ap-
proach for finding links between VMs: correlation of coarse
grained metrics and packet sniffing. Once the topology of an
application is determined, the system can place VMs to more
efficiently use network resources. Our work differs from
these projects because we focus on scalable algorithms for
not only determining how virtual machines are connected,
but also for classifying them based on the type of application
they are most likely running.

VII. CONCLUSIONS AND FUTURE WORK

We are developing the TopClass system to determine a
virtual topology of cloud data centers without requiring
application-specific knowledge of the systems running on
each host. TopClass uses a simple network monitoring
module that can be deployed inside several popular hyper-
visors to track the communication links between different
VMs. This information is then aggregated, and the resulting
communication graphs analyzed to determine the network
topology of each distributed application in the data center.
TopClass then uses an optimized graph similarity algorithm
to classify each distributed application and correlate the
similarity of its VMs with a template service. We believe
that the combination of high level topology information and
VM-level service labels provided by TopClass will allow
automated cloud platforms to manage groups of VMs far
more efficiently.

In our ongoing work, we are analyzing the scalability
of our algorithms and testing their accuracy on real data
center traces. We are developing enhancements that will
use not only connectivity information, but traffic rates and
port information to further annotate nodes in the graph and



help with service classification. We are also considering
several enhancements to our monitoring system such as
using packet data to infer application-level performance
metrics like response time. Our goal is to provide system
administrators and automated control systems a low-cost
data center inspection service that gives insight into how
distributed groups of black-boxes interact.
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