
Cloud-Scale Application Performance Monitoring with SDN and NFV

Guyue Liu and Timothy Wood
The George Washington University

Abstract— In cloud data centers, more and more services are
deployed across multiple tiers to increase flexibility and scal-
ability. However, this makes it difficult for the cloud provider
to identify which tier of the application is the bottleneck
and how to resolve performance problems. Existing solutions
approach this problem by constantly monitoring either in end-
hosts or physical switches. Host based monitoring usually needs
instrumentation of application code, making it less practical,
while network hardware based monitoring is expensive and
requires special features in each physical switch. Instead,
we believe network wide monitoring should be flexible and
easy to deploy in a non-intrusive way by exploiting recent
advances in software-based network services. Towards this
end we are developing a distributed software-based network
monitoring framework for cloud data centers. Our system
leverages knowledge of topology and routing information to
build relationships between each tier of the application, and
detect and locate performance bottlenecks by monitoring the
network from software switches.

I. INTRODUCTION

The applications running inside public clouds and private
data centers are growing in size and complexity. Even a
relatively straightforward web application is likely to be
composed of multiple interacting service components: a
front-end web server, a caching tier, an application server,
and a database tier, each of which may be replicated to
support higher demand. The result is a complicated dis-
tributed application that may exhibit performance bottlenecks
and unpredictable behavior depending on server and network
load.

Understanding the behavior of these applications is further
complicated by the shared nature of modern data centers that
rely on server multiplexing for cost and energy efficiency.
Thus a data center will host many different applications,
sharing a mixture of server, storage, and network resources.
Further, the data center or cloud operator is unlikely to have
expert knowledge (or in some cases any knowledge) about
the application components being run across its servers.
This makes diagnosing performance problems particularly
difficult, since in many cases the servers running the ap-
plications cannot be easily modified to provide information
about application-level performance.

The use of virtual machines running on a hypervisor
provides one opportunity for observing the behavior of
individual application components, but this still typically pro-
vides only coarse grained resource consumption information,
and it must be aggregated across hosts to understand overall
application performance.

Instead, we are developing a network monitoring and
performance debugging system that takes advantage of recent

advances in Network Function Virtualization (NFV), which
allows high speed packet processing software to be built
into the network itself. These virtual machine-based net-
work services can be instantiated on demand, and Software
Defined Networking (SDN) can be used to route flows to
them for monitoring when needed. This allows the software-
based network infrastructure to efficiently observe packet
flows and infer performance data from many hosts, while
treating applications as black-boxes.

To achieve this, we are developing NetAlytics, a platform
for high speed cloud network analysis. NetAlytics can ef-
ficiently monitor packet flows at rates of 10Gbps or more,
sending a sample of packets or aggregated flow statistics
to queuing and processing engines for further analysis. In
this paper we discuss the challenges of cloud-scale network
monitoring and our progress building NetAlytics, which
includes:

• NFV-based network monitoring components that can be
deployed precisely where they are needed to efficiently
monitor packet flows.

• A control framework that uses SDNs to split traffic and
send targeted flows to the monitoring system.

• A processing engine that can perform real-time ana-
lytics on the aggregated data, providing insights into
application performance and network behavior.

We describe our initial prototype and demonstrate how
it can be used to have the network monitor response time
statistics for a multi-tier web application, allowing cloud
administrators or an automated resource management system
to detect bottlenecks and understand per-tier performance.
We also illustrate how more sophosticated statistics such as
“top-k” content popularity analysis can be performed in real
time on network data.

II. NETWORK AND PERFORMANCE MONITORING

This section provides background on approaches to mon-
itoring application performance in cloud environments and
recent developments in software defined networking and
network function virtualization.

A. Cloud Application Monitoring
Infrastructure as a Service cloud platforms and private

data centers provide elastic scalability by allowing virtual
machines to be replicated or resized to meet changing
workloads. The decisions to perform these changes can either
come manually from system administrators or through an
automated resource controller. In either case, some kind of
monitoring agent is typically what triggers the alerts that
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Fig. 1. This multi-tier web application has been misconfigured, causing
App Tier 1 to send requests only to the database instead of making use of
the cache; this kind of performance issue can be very difficult to diagnose
without detailed information of per-tier application performance.

suggest an application may not be meeting its Service Level
Agreements (SLAs).

Many performance management systems simply rely on
resource consumption as a proxy for understanding perfor-
mance [17], [11]. However, this is not always effective,
particularly for dealing with performance issues in multi-tier
applications where it may be difficult to determine which tier
is the source of a performance problem. Consider the multi-
tier web application illustrated in Figure 1. The application
has a web front end that load balances requests to a replicated
application tier. The application tiers retrieve data either from
a MySQL database or a memcached in-memory cache. In
this example, App Replica 1 has been misconfigured so that
its connection to the memcached node is not being used,
causing signficantly higher response times for requests since
they need to be processed by the database instead of the
much faster cache. This kind of performance anomaly is
commonly seen, where due to the complex nature of modern
distributed web applications, only a subset of requests may
see a performance issue.

If resource monitoring were used on this system, it would
find the CPU load on both App tier replicas to be very
similar–each is simply receiving an input request and then
making a network call to either the database or the mem-
cached server, causing a similar load on CPU, memory, and
the network. This hides the fact that the performance issue is
really a misconfiguration on one of the nodes—simply using
resource monitoring will be unable to reveal the source of
this issue (and may not even indicate that there is a problem,
unless the database’s resources become overloaded). Only by
understanding actual application-level performance broken
down by tier can a system administrator determine the source
of this kind of performance anomaly.

Amazon EC2’s CloudWatch monitoring service can trans-
parently observe the resource utilization levels on individual
VMs, or VMs can be modified to include a monitoring agent
that provides additional details such as application response
times. However, instrumenting applications in this way can
be difficult and requires actions by the owner of each virtual
machine. This prevents the monitoring system (and thus any
automated management systems that would rely on its data)
from being completely controlled by the cloud provider or
data center operator—ideally, clouds should be able to offer
services such as dynamic performance resource management

in a completely transpartent way.
One approach for transparently determining application

performance is to intercept network packets and infer appli-
cation behavior from this information. Aguilera et al. [1] treat
each componet of a distributed system as a blackbox and per-
form performance debugging by observing message traces.
NetCheck [19] performs diagnosis by using a blackbox
tracing mechnism to collect a set of system call invocation
traces from the relevant end-hosts. We have the same end-
goals as these works but in this paper we focus on how
to efficiently deploy network monitors in software-based
networks and use a scalable processing engine to analyze
network data in real time.

B. SDN and NFV Background
Software-Defined Networking (SDN) [4] is changing how

networks are managed by providing a logically centralized
controller capable of having a network-wide view and ap-
plying carefully crafted rules that target individual flows. At
the same time, Network Function Virtualization (NFV) has
emerged as a technique to run high performance network
services as softwares running in virtual machines (VMs) on
low cost commodity servers. [10], [5]

Recent projects [13], [6], [7], [2] propose to do network
monitoring and troubleshooting under the SDN architec-
ture. For example, NetSight [7] records the full packet
histories and provides an API for network analysis pro-
grams to diagnose problems. OpenSample [2] leverages
sFlow packet sampling functionality in physical switches
to measure network load and individual flows. EMC2 [13]
proposes monitoring network flows inside virtual swiches in
the host to achieve network wide monitoring and improve
scalability. Planck [15] improves network-wide monitoring
performance by employing oversubscribed port mirroring to
extract network information in commodity switches.

Compared to traditional network, SDN provides network-
wide visibility and allows for constantly monitors network
conditions and reacts rapidly to problems [15].

Existing SDN-based networking monitoring apporaches
mainly focus on individual packets or flows, and simply
query switches to get packet counts that match differ-
ent flow table entries. This is sufficient for raw packet
counts/bandwidth monitoring, but doesn’t give sufficient
detail for real performance monitoring or network debugging.
Thus, we propose to intergate NFV-based monitors into SDN
architecture so that monitors can interpret packet headers or
even packet bodies to gather much more detailed monitoring
information while leveraging controller’s global topology
information.

III. NETALYTICS DESIGN

NetAlytics will provide a platform for understanding ap-
plication and network behavior in real time. The system
is composed of components deployed into the network to
analyze and process data, and a control plane framework
that instantiates the data plane monitoring and analysis
components and routes flows to them on demand. This allows
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Fig. 2. Future data centers will be built from mixed hardware and software networking components, allowing network monitors to be strategically placed
to observe applications and send their aggregated data to processing elements.

monitoring to be seamlessly integrated into the network
precisely when and where it is needed, and ensures that the
processing capacity will scale up and down with changing
workloads.

A. Network Architecture

With the advent of fast software-based packet processing
engines based on netmap [16], [14] and DPDK [3], [9], we
believe that future data center networks will be composed of
a mix of hardware and software switches. This architecture,
illustrated in Figure 2, uses hardware packet switches in the
core of the network where speed is of utmost importance,
while intermediate and rack-level switches have more flexible
software switching capabilities (or potentially a mix of
hardware and software switching within a single box). A
distributed application within the data center is likely to
be spread across multiple network hops, so a single switch
may not have complete visibility into the behavior of an
application’s components.

The goal of NetAlytics is to provide detailed real-time
analysis of network and application behavior throughout this
type of cloud network. The NetAlytics platform is composed
of three main component types:
Monitors: are sources of data, typically residing on a
software-based switch or an end-host server. They may
perform some minimal processing of the data stream to
reduce the volume of data they produce. For example, a web
application performance monitor might sample a subset of
flows and filter packets by the SYN and FIN flags to detect
the start and end of each connection, it would then emit
measurements that indicate the time to receive and process
a web request over an HTTP connection.
Aggregators: are servers that take input from one or more
monitors and hold it in a queue until it can be processed.
Aggregators may also be configured to perform simple
processing such as calculating basic statistics across several
monitor streams. An example Aggregator might partition
incoming HTTP request response time measurements into
different queues based on the server or content being re-
quested.

Processors: implement the desired analysis on the data
retrieved from aggregators. We use an existing streaming data
analytics engine to facilitate development of applications that
can perform real-time analysis of the monitored data. For
example, a Processor could pull data from specific queues
on an Aggregator to provide live analysis of response times
for different portions of a website.

In NetAlytics, we are building network data stream Mon-
itors using DPDK and our NetVM platform. We use Apache
Kafka, a high throughput distributed messaging system,
for our Aggregators, and implement our Processors on the
Apache Storm real-time distributed computation engine. We
provide further details of our implementation in Section IV.

B. Network Analytic Queries
NetAlytics must deploy these network components in

order to answer some analytic query issued by a user. For
example, a user might wish to answer one of these questions:

• What is the response time breakdown per component
for a mult-tier web application?

• Which servers are consuming the largest fraction of
bandwidth over the most congested links?

Depending on the question, NetAlytics will have to deploy
a different set of Monitors, Aggregators, and Processors.

NetAlytics assumes access to the topology of each appli-
cation that must be monitored within the cloud. This includes
both the set of components that form an application and their
physical location within the network (i.e., which switches
they are connected to and the network topology). This infor-
mation can either be provided by the system administrators
deploying applications into the cloud, or through automated
topology detection methods [8], [18].

Given this topology, NetAlytics can determine which
network links need to be monitored, and what data needs to
be gathered about each flow. In our current implementation,
the data to be gathered and the processing to be performed on
each data tuple needs to be specified manually, but our goal
is to generalize this to provide a more expressive framework.

The first step is to determine which data must be gathered.
Ideally, users should be able to use SQL-like syntax to
specify which applications and data fields they are interested



in analyzing. Note that NetAlytics only enables monitoring
when it is explicitly needed, so the “select statements” would
be a trigger to decide what new data needs to be collected.

Given a data stream defined by the above query, NetAlytics
will seek to provide a convenient way to perform common
data analysis operations on the stream. This will be achieved
through a collection of Processor elements implemented by
a library of common functions. These library components
would provide statistical tools ranging from simple running
averages to more sophisticated “top-k” analysis.

With these two building blocks, a system administrator
will be able to easily specify what type of data they are
interested in and connect together processing elements that
can perform the desired analytics. NetAlytics will then
deploy the necessary services into the network to gather,
aggregate, and process the data.

C. Control Plane

NetAlytics’s Monitors, Aggregators, and Processors
should be deployed into the network only when they are
needed, and only where they can observe the specific appli-
cations being studied. A 10Gbps link can generate over 14
million packets per second, so continuously running monitors
that gather fine grained statistics can be extremely wasteful.
NetAlytics takes advantage of NFV to deploy monitors at
the locations where they can most effectively analyze traffic
between components of the targeted applications, and uses
SDN controllers to direct packet flows to these monitoring
services.
Instantiating NFV Services: our NetVM platform [9] facili-
tates deploying network functions such as packet monitoring
into virtual machines. NetVM’s management framework on
each host can start a VM running a desired application and
then ensure that incoming flows matching certain patterns are
directed through the appropriate set of network functions.
In our current setup, we are able to instantiate a new
NFV service in less than four seconds. For NetAlytics, we
are extending the NetVM platform to integrate with the
NetAlytics controller, which will inform specific hosts that
they should start Monitors, and provide them with the flow
matching rules so that only the desired applications or users
are monitored.
Mirroring Flows to Monitors: The NetAlytics Controller
runs as an application integrated with an SDN Controller,
allowing it to easily manipulate how packets are being
forwarded throughout the network. In our current approach,
we do not modify the forwarding paths of existing flows
in the network—NetAlytics simply places the Monitor net-
work functions within the existing paths being taken by
the application under study. The SDN controller then issues
commands to the relevant switches to enable port mirroring.
This duplicates the traffic and sends it to the host running
the monitoring service. By mirroring the traffic, we avoid
having the monitoring infrastructure manipulate the existing
networks, which could inadvertently impact the behavior
being monitored.
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Fig. 3. NetAlytics uses port mirroring to duplicate the desired flows and
send them to the network monitors. A monitor must be attached to at least
one switch on the path between each communicating pair.

For example, consider the network illustrated in Figure 3.
The NetAlytics user has requested performance monitoring
for both applications A and B. The NetAlytics controller
will cause monitoring services to be started in VMs on
Host 2 and Host 5. The controller then uses OpenFlow
to send a rule to the switches they are connected to to
mirror traffic to those hosts. It would be possible to redirect
traffic for application A through the middle switch so that
a single monitor could be used on Host 5 to observe both
applications. This could provide a more efficient monitoring
infrastructure, but it also may negatively impact performance
of other applications. In our future work we will explore the
trade-offs of using different placement algorithms to deploy
monitoring services.

IV. NETALYTICS IMPLEMENTATION

We have been developing a prototype that includes some
of NetAlytics’s key components.

A. NFV Monitors
We have built a DPDK-based network monitor that can

monitor packet flows at line-speed and gather statistics about
web application performance such as response time. This can
be installed inside virtual machines using SR-IOV to allow
DPDK to directly access the NIC. We will be porting this
code to our NetVM platform which provides for both faster
packet processing in VMs and allows chains of monitoring
services to be easily connected together on a single host, and
managed by a SDN controller.

The network monitor receives a copy of every packet
on the specified link. It can inspect the packet headers to
determine the source/destination or view the other flags. We
use this capability in our response time monitor by checking
TCP ACK/SYN/FIN flags to determine the start and end of
each connection and estimate response time. In some cases,
such as monitoring performance of specific web queries,
it can be necessary to inspect the packet body in order to
examine data such as HTTP request contents. Our monitor
is capable of performing this form of deep-packet inspection
while maintaining line rate throughputs.

B. Realtime Processing with Storm
We are using Apache Storm as our processing engine

to analyze network data in real time. Storm provides a
distributed computation engine similar to the Map Reduce



framework, but it focuses on processing streams of data
in real-time. This provides a convenient platform to write
programs that analyze the data gathered by the monitors.

Our current prototype uses Storm to process monitoring
logs that have been saved to disk by an NFV monitor. In
the future, we will use a queuing service such as Kafka [12]
for our Aggregators, and will enhance our NFV monitors so
that they can send records to the queuing service. We can
also use a database to store output from Storm so that our
system can support both short-term and long-term queries.

V. NETALYTICS PROTOTYPE USE CASES

We have developed two applications that use our NetAlyt-
ics framework to study the performance of multi-tier appli-
cations and the popularity of content for a video streaming
cluster.

A. Multi-Tier Web Application Performance Debugging
Our first use case shows how NetAlytics can detect bottle-

necks and debug network performance issues by monitoring
response time statistics. For these experiments we have the
NetAlytics Monitor directly process the incoming streams,
without using a processing engine.

We first configure our servers to act like the misconfigured
web application from Figure 1, where one replica is sending
requests to a fast memcached node while the other is using
a slower database. We program our monitor to gather con-
nection timing information by detecting the length of each
TCP connection between the different application tiers by
filtering for SYN and FIN packets. From the table below we
can see that the CPU utilization on both application servers is
identical, but because App Server 1 is misconfigured, it sees a
significantly higher average response time. NetAlytics is able
to help diagnose this problem by providing the response time
breakdown for each component in the multi-tier application.

Response Time CPU Utilization
App Server 1 372 (ms) %12
App Server 2 15 (ms) %12

Full connection times can sometimes be too coarse grained
since a client may issue multiple requests over a connection
so we estimate the response time by continuously measuring
the intervals between each ACK sent from server side, this
information is an important metric for determining network
behavior.

We next use one client and two servers to emulate a multi-
tier application, with the goal of determining the response
time breakdown per-tier at fine granularity. We run a config-
urable PHP application to create different load on the two
web tiers and chain them together. Our NetAlytics monitor
observes the ACK packet exchanges to determine the request
cost breakdown within and across tiers.

Figure 4 illustrates how the NetAlytics monitor can use
the network trace to measure the time for data exchanges
between tiers. NetAlytics measures the time for the client’s
entire HTTP connection as 763 ms, with a breakdown of
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Fig. 4. Response time for each tier of web application

12 ms at the App tier, followed by 751 ms at the Web
tier. This helps system administrators to find which nodes
are the bottleneck, and helps application developers track
down the sections of their code that have high cost—in this
case, the performance overhead occurs in the code run after
a connection to the App server is completed.

B. Real-Time Content Popularity Monitoring

Next we show how to use Apache Storm as a processing
engine for network data. In particular, we show Storm can
keep track of top-k content popularity in real time. We use
traces released by Zink et al. [20] which contain information
about client requests for YouTube video clips recorded at a
network gateway. We analyze trace T6 which is composed of
seven consecutive 24-h traces and includes a unique VideoID
for each Youtube video and the content server IP address for
each request. In a live deployment, this information could
be easily gathered in a network monitor by processing the
body of client request packets to determine the content being
requested and the accessed video server.

We use Storm to process the data and find the Top-
100 popular videos within a measurement interval. The
table below shows the most popular videos and content
servers measured over the entire trace. Currently, this kind of
information is usually gathered by using daily or weekly log
data analysis tools such as Hadoop. With NetAlytics, we can
provide these types of insights at much finer grained time
intervals, and with no instrumentation of the video server
applications themselves. Figure 5 shows the popularity of
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Fig. 5. NetAlytics uses Storm to measure video content popularity over
time (100 is most popular video).

the 2nd and 3rd most popular videos over time as reported
by Storm. In this case we can see that even this top content
sees fluctuations over time. This real time information could
be useful for optimizing resource allocations and caching
behavior.

Rank Video ID #hits Content Server #hits
1 x9QNKB34cJo&origin 223 105.136.3.123 20522
2 7sei-eEjy4g&origin 215 105.136.3.63 14863
3 tyKtQ0216bo&origin 162 105.136.78.115 13408
4 4rb8aOzy9t4&origin 159 105.136.78.93 10136
5 edhpwSMqc2I&origin 155 105.136.78.16 9891

TABLE I
TOP 5 VIDEOS AND CONTENT SERVERS OF YOUTUBE TRACE

VI. CONCLUSIONS AND FUTURE WORK

Public clouds and private data centers are filled with
a diverse range of applications, most of which are now
distributed across multiple networked servers. This makes
understanding the performance of these applications chal-
lenging, particularly when it is not feasible to directly
instrument the applications or the virtual machines they run
in. We have described NetAlytics, a platform for large-
scale performance analysis by processing network data. Our
system takes advantage of Network Function Virtualization
to deploy software-based packet monitors deep into the
network, and uses Software Defined Networking to steer
packet flows to the monitors. Once data has been captured,
it is aggregated and sent to a processing engine based on
the Apache Storm real-time data analytics engine. We have
illustrated how our platform can help diagnose performance
issues by measuring per-tier response times and by providing
insight into content popularity.

In our ongoing and future work we will further enhance
NetAlytics to support a convenient language for defining
the flows and packet data to be monitored, and a set of
processing building blocks for common real-time analytic
tasks. We are also exploring the placement problem to decide
how network monitors and processing engines should be
positioned within the network to minimize both bandwidth
costs and resource consumption.
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