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Abstract
Communication networks are changing. They are becoming more and more “soff-
ware-based.” Two trends reflect this: the use of software defined networking and
the use of virtualization to exploit common off-the-shelf hardware to provide a wide
array of network-resident functions. To truly achieve the vision shared by many ser-
vice providers of a high-performance software-based network that is flexible, lower-
cost, and agile, a fast and carefully designed network function virtualization
platform along with a comprehensive SDN control plane is needed. The shift
toward software-based network services broadens the type of networking capabili-
ties offered in provider networks and cloud platforms by allowing network services
to be dynamically deployed across shared hosts. Combining this with an SDN con-
trol plane that recognizes the power of a dynamically changing network infrastruc-
ture allows network functions to be placed when they are needed and where they
are most appropriate in the network. Our system, SDNFV harmoniously combines
the two fast moving technological directions of SDN and virtualization to further

the goal of achieving a true software-based network.

etworks have traditionally been composed of

interconnected hardware such as routers,

switches, and firewalls. Employing purpose-

built hardware appliances, managed through
distributed protocols, has allowed networks to achieve high
performance and reliability, but it comes at the cost of limited
flexibility. This tradition has mostly continued, with such pur-
pose-specific hardware systems being deployed even for typi-
cal software functions such as proxies, firewalls, and caches,
because of the desire to have a high-performance data plane.
This limits the flexibility of network functions, has high cost,
and makes it difficult to deploy services dynamically.

Cloud data centers have increased their efficiency and flexi-
bility by employing virtualization techniques that allow conve-
nient (often centralized) management of dynamically created
server instances. With the adoption of software defined Nnet-
working (SDN) and network function virtualization (NFV), a
similar revolution is happening in both wide area networks
and data center networks. SDN provides a logically central-
ized control plane that can flexibly direct packet flows between
network devices based on programmable policies [1-3]. NFV
transforms networks from hardware appliances with cus-
tomized application-specific integrated circuits (ASICs) into
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software running in VMs (VMs) on common off-the-shelf
(COTS) hardware to increase flexibility and lower cost [4-6].
Together, SDN and NFV offer the potential to radically alter
how networks are deployed and managed.

By moving to a software-based environment, NFV makes
network services easy to deploy, and allows them to be more
powerful and flexible, enabling more complex topologies and
feature-rich network resident functions compared to hard-
ware-based implementations. Unfortunately, the performance
limitations of commodity hardware and the overhead of server
virtualization platforms have prevented high-performance net-
work processing to fully transition away from hardware-based
routers and middleboxes. In this article we describe how a
carefully designed NFV architecture can overcome these vir-
tualization-layer overheads through zero-copy packet data
transfer, non-uniform memory access (NUMA)-aware
scheduling, and lockless data structures. Our approach
exploits advances in multi-core CPUs and modern network
interface cards (NICs) to enable a truly flexible, VM-based
networking platform that can process packets at line rates.

SDN has already impacted how networks are deployed and
managed, but current approaches do not fully exploit the ben-
efits of an NFV-based infrastructure. SDN controllers still
assume they are interacting with simple hardware devices that
are incapable of making decisions on their own. The reality is
that increasing deployments of middleboxes and NFV-based
services means that not only will flow management become
more complex, but also that data plane elements will want to
make dynamic decisions about how packets are directed. The
ability to dynamically steer flows through selected service
functions is a key capability for network service providers.
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Having some of these decisions performed locally by a mid-
dlebox in the network, rather than having to go to the central-
ized controller for orchestrating this capability can result in
substantial performance improvement (in terms of both
throughput and latency). Here we argue that the existence of
a “smart data plane” capable of knowing its local state and
basing decisions on such state is key to supporting networks
with both high performance and flexibility.

Evolving the Network Control and Data
Planes

Networks have traditionally been constructed from hardware
switches and routers that make decisions about forwarding
based on the results of a distributed protocol such as Open
Shortest Path First (OSPF) and Border Gateway Protocol
(BGP). While this decentralized approach provides resilience
and performance, it also limits forwarding decisions to simple
criteria such as the number of hops along a path. Some
approaches such as setting the DS bits in an IP header pro-
vide a coarse-grained mechanism for classifying network traf-
fic; however, this places control at the end host, not at the
network forwarding elements. In general, classes of packets
destined for a particular destination end up being managed in
the same way.

As the traffic flowing through networks becomes increas-
ingly heterogeneous, network operators now desire to route
traffic at the flow level, allowing differentiation between flows
based on more selective criteria such as the individual source
and/or destination, the protocol being used, or even packet
content. SDNs have enabled this form of traffic management
by dividing the network into a smart control plane along with
a simple data plane. Rather than have switches use distributed
route selection algorithms, they are only responsible for
quickly forwarding packets. The data plane routers and
switches learn how to route packets by contacting a logically
centralized control plane that can be queried to determine the
next hop for any packet flow. In essence, SDN develops algo-
rithms that use network-wide data structures rather than dis-
tributed algorithms implemented in network elements.
SDN-aware network hardware forwards the first packet for a
new flow to the SDN controller, allowing it to inspect the
packet’s headers and apply a complex forwarding policy if
necessary. The interaction between the control plane and the
data plane is to share packet flow information. The control
plane (SDN controller) uses the first packet and periodic
statistics reported from network elements to generate rules
that are incorporated into flow tables with actions on the
packet flows. The data plane refers to these flow tables and
sends packets according to actions for matched rules [1, 3].

SDN applications make intelligent decisions to perform
traffic engineering, quality of service (QoS) differentiation,
monitoring, and routing. In particular, service providers have
exploited SDN principles for policy-based routing [7] and pol-
icy-based access control [8]. The logical centralization of such
policy has been used to significantly simplify the incorporation
of policy with BGP routing, while not impacting performance.
Another area that has seen use of SDN capabilities is in net-
work virtualization, where different sets of endpoints commu-
nicate over different virtual networks, while exploiting a
common underlying physical network [4]. Each of these
approaches has simplified network operations, especially from
the point of view of configuration and provisioning.

Within the data plane, NFV has been developed as a way
to run network services with greater flexibility and lower cost
by using commodity servers instead of specialized hardware.

While software routers such as Click have been around since
the early 2000s, it has only recently become possible to pro-
cess packets in software at line rates of 10 Gb/s or higher.
Some approaches such as PacketShader leverage GPUs to
provide fast, highly parallelizable processing of packets [9].
Purely software approaches such as netmap and Intel’s Data
Plane Development Kit (DPDK) exploit multi-core CPUs and
zero-copy memory transfer approaches to efficiently move
packet data directly to applications, eliminating operating sys-
tem (OS)-level overheads [10-12]. By applying these tech-
niques within VMs, NFV has further increased the flexibility
in how packets are routed [4-6].

Despite these advances within the data plane, SDN assumes
that the network elements are simple forwarding entities, such
as Ethernet switches, along with queueing and scheduling
mechanisms for achieving differentiation and meeting service-
level assurances with which flows may be provided. However,
with the advent of software-based network entities, it is only
natural to examine whether it is appropriate to have the data
plane make local decisions based on local state, while the logi-
cally centralized controller continues to use algorithms that
use network-wide data structures and state that are more fea-
sible to make available to the controller. We believe that this
can enable a more flexible, higher-performance network envi-
ronment that is also more responsive to dynamic changes in
the placement of software-based network elements in the net-
work.

NetVM: An Efficient, Software-Based Data
Plane

We have been developing NetVM, a virtual server platform
optimized for running network services [13]. Our initial work
on NetVM shows the considerable promise of the use of virtu-
alization in a software-based platform. NetVM enables high-
bandwidth network functions to operate at near line speed,
while taking advantage of the flexibility and customization of
low-cost commodity servers. The NetVM platform is the base
for our SDN NFV(SDNFV) vision of flexible and dynamic
network services.

NetVM Platform Overview

There are three main challenges that prevent COTS servers
from being able to process network flows at line speed. First,
network packets arrive at unpredictable times, so interrupts
are generally used to notify an OS that data is ready for pro-
cessing. The overhead of handling millions of interrupts per
second when receiving packets at 10 Gb/s or more quickly
exceeds the time spent (or even available for) doing useful
packet processing. Second, existing OSs typically read incom-
ing packets into kernel space and then copy the data to user
space for the application interested in it; these extra packet
copies incur a high cost, especially if a packet is being trans-
mitted through a chain of network services running on one
host. Finally, network I/O in virtualized settings can have even
greater overheads due to additional copies between the hyper-
visor and guest, and the need to multiplex a device across
multiple VMs.

The Intel DPDK platform tries to reduce the first two over-
heads by allowing user space applications to directly poll the
NIC for data. This avoids both interrupt processing and
unnecessary data copies. Our NetVM platform extends
DPDK for a virtual platform so that packet data can be effi-
ciently transferred to and between VMs, a crucial requirement
for the flexible network services envisioned by SDNFV.

Figure 1 illustrates the architecture used by NetVM to
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Figure 1. NetVM uses DPDK to direct DMA packet data into
a region of memory shared with multiple VMs. Packet
descriptors are then exchanged with the VMs, allowing them
to examine and modify packet contents before sending them
back out the NIC.

overcome these challenges. Our implementation builds on the
KVM hypervisor, and contains components running in the
host and each guest VM. The NetVM Core component man-
ages VMs and routes flows to them, while individual VMs
process packets for the desired network functions.

ZLero-Copy Communication

NetVM'’s focus is on allowing zero-copy packet delivery from
a NIC to a network service composed of one or more VMs.
NetVM uses shared huge pages to store all incoming packet
data. This memory area is shared between the host OS and all
VMs running network services. References to packets are sent
between the hypervisor and VMs using a set of per-VM ring
buffers for receiving and transmitting packets between
domains (denoted as R and T in the figure). This approach is
used for all communication in the system; using a shared
memory area for large pieces of data combined with a simple
queue for message passing avoids expensive copy operations
while allowing high scalability across cores.

Lockless, NUMA-Aware Optimizations

Locks are typically used to ensure consistency of shared data,
but even acquiring an uncontested lock can take tens of
nanoseconds, which is too large a cost when trying to process
packets at line rates. Fortunately, the communication archi-
tecture used by NetVM can be implemented safely without
any locks since only a single thread writes to each message
ring. Since a packet descriptor will be held by only the host or
a single VM at a time, packet data in the huge page region
will never see concurrent accesses. This approach allows
NetVM to avoid the high latency and performance variability
inherent in using locks.

Modern servers may have multiple CPU sockets, each con-
nected to different banks of memory. This can result in
NUMA costs if a thread is accessing data spread across sever-
al dual in-line memory modules (DIMMs). To avoid this,
NetVM uses one huge page region per CPU socket, and
ensures that a packet stored in one region is only processed
by cores on that socket. This prevents NUMA costs and
increases cache locality.

Software-Based Services

NetVM provides a user space library inside each VM that
allows services such as routers, firewalls, and deep-packet
inspection engines to receive and forward packets between
VMs and other hosts. The library greatly simplifies the devel-
opment of these services, and since they run as user space
applications, programmers can more easily reuse and debug
their code. The fact that services are run within VMs also
greatly facilitates deploying these services: each can be treated
as an isolated appliance that can easily be swapped in or out
without worrying about dependencies or interference between
components.

NetVM Performance

Currently, the most common way to deploy network services
inside VMs is to use single root IO virtualization (SR-IOV),
which allows a physical NIC to be divided into multiple virtual
interfaces, which are then assigned to each VM. This removes
hypervisor-related overheads, and allows libraries like DPDK
to be run directly inside each VM. This approach of using
hardware virtualization to bypass OS or hypervisor overheads
has seen growing popularity for optimizing the critical path
for networked applications [12]. However, SR-IOV incurs a
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Figure 2. a) The throughput achieved by NetVM is orders of magnitude higher than running a software router in standard Linux,
and gets double the performance of SR-IOV-based VM networking; b) the performance of SR-IOV drops even further when
steering packets through multiple VMs on a host. NetVM only sees a performance drop after three VMs because the system
does not have sufficient CPU cores; if only 60 percent of packets pass through the chain with the remainder only visiting the first

VM, NetVM can maintain the line rate of 10 Gb/s.
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cost, particularly if packets must be sent through
a chain of several VMs on the same host. This is
because moving packets between VMs requires
transmitting the packet from the source VM to
the NIC, where it will be switched to a different
virtual interface. Even worse, if the destination
VM is connected to a different physical port on
the same NIC, the packet must be sent outside of
the host to an Ethernet switch that will return the
packet to the other port. In contrast, NetVM’s
optimizations let it achieve scalability across cores
and high throughputs of 10 Gb/s, even when
transmitting 64-byte packets through long chains
of VMs, as shown in Fig. 2.

SDNFV: Controlling a Smarter Data Plane

An efficient NFV platform still must be managed by a con-
troller with network-wide view and an understanding of the
desired policies that must be applied to different flows. Our
ongoing work on SDNFV is exploring how NetVM hosts
should be combined with SDN controllers to provide coordi-
nated network management while still taking advantage of the
power and flexibility of smart data processing elements.

Service Naming

We believe that introducing the idea of “names” for services,
rather than continuing to retain the traditional location-based
identification of service functions in the network, will further
improve the performance and flexibility of SDN in an NFV-
based network environment. Software-based network resident
functions, such as functions to modify packet headers (e.g.,
NAT, proxy), examine and allow or block packet flows (e.g.,
firewalls and deep packet inspection devices), or even modify
the packet payload (e.g., optimization and compression of
video) will allow networks to be more dynamic. But these func-
tions only need to be applied to certain packets. Implementing
them in software can provide powerful flexibility to a service
provider to place such services at optimal points in the packet
flow, rather than in a particular location in the network topol-
ogy and routing packets to them. Having functions dynamically
move around implies that it is necessary to name these services
rather than refer to them based on their current location. This
has been demonstrated to provide significant performance
improvement, particularly in reducing end-to-end latency [14].
Existing approaches unnecessarily couple routing with the
policy: that is, when an SDN controller decides the functions
a flow needs, it also decides the path the flow has to go
through and sets up state on the intermediate switches. These
solutions limit scalability and flexibility, making it difficult to
adapt to the requirements of a large-scale, dynamically chang-
ing environment supported by NFV. Having service names
enables an approach that separates the functions a flow needs
from the location of network function instances. Such a
decoupling facilitates the dynamic modification of the func-

tions needed by a flow.

Function Composition with Service Graphs

A network operator will have a desired set of functions that
should be applied to different types of flows. In SDNFV, this
is represented with a service graph that indicates which types
of network functions a packet flow should be processed by,
and in what order. An example is shown in Fig. 3, where two
different types of flows are routed through a different set of
network functions. These network functions then must be
mapped to individual NetVM hosts, which can provide the
desired packet processing capabilities. Using abstract service
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Figure 3. SDNFV uses a service graph to represent the abstract function
names required for different flows. The graph is then implemented by
functions deployed in VMs across multiple hosts.

names allows the mapping of service to virtual instance to be
performed far more dynamically than existing approaches.

When a packet arrives at a NetVM host, a flow table
lookup is performed to see if the service graph for the pack-
et’s flow has already been determined. If not, the packet is
sent to the SDN controller, which will find the appropriate
service graph and then forward flow table rules to all NetVM
hosts related to the flow. We repurpose the OpenFlow
OFPT_FLOW_MOD message, which specifies an output port
for a matched flow. In our context, the port id is used to rep-
resent the service, not an Ethernet port. The NetVM host
maintains the local mapping between service names and VM
instances. This architecture allows the SDN application to
compose complex network services by populating rules across
multiple hosts.

Smart Data Planes

The current SDN approaches explore the space of having a
somewhat strict separation between the control plane’s deci-
sion making and the relatively simple data plane. While the
current model can effectively support simple applications like
a firewall, more complex applications such as intrusion detec-
tion require continuous analysis of state only available to the
data plane. In this case, the controller will quickly become
overloaded if it must analyze data plane information. In our
experiments, we find that OpenvSwitch’s throughput drops
from 10 Gb/s to less than 4 Gb/s even when 10 percent of
packets must be sent to the controller. Clearly, frequently
sending traffic and doing expensive processing on the con-
troller side is not a scalable solution for stateful middleboxes.
We emphasize that there is a role to be played by the data
plane in helping the control plane make better decisions, by
providing state information that is critical in making policy
decisions as well as making choices for routing of traffic flows,
such as with network traffic engineering. With a “smart data
plane,” we can also make simple decisions based on a priori
guidelines from the controller to immediately guide some net-
work flows that would otherwise require communication with
the controller resulting in both overhead and latency.

In the past there have been efforts to have a much more
elaborate set of functions within the network, such as with
Active Networks [15]. With the Active Network philosophy,
network elements were more deeply involved in packet pro-
cessing than the simple action of forwarding a packet over an
appropriate port. This meant compromises had to be made on
the performance achieved at these entities, as resources had
to be allocated for the active network functionality. Alterna-
tively, additional cost was incurred to have such functions resi-
dent and available at network resident entities, to be used as
needed. However, with the evolution of middleboxes, this
trend shifted to software-based distinct engines that were
located at strategic points in the network or at best were
appendages to the network forwarding elements. As technolo-
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gy has progressed further, with the ability of software-based
entities to perform both forwarding functions as well as policy
and other middlebox functionality, our approach of a smart
data plane in fact seeks to put capabilities exactly when and
where they are needed, dynamically. Thus, where the func-
tionality is primarily forwarding, the entire capacity of the
engine is available. When a need arises for middlebox func-
tionality, even for a subset of the flows, virtualization allows a
new, isolated software middlebox to easily be deployed to per-
form this function. The performance impact therefore would
be tuned to the demands of the flows and the traffic that is
actually encountered at each network entity.

Remaining Challenges and Opportunities

The combination of SDN and NFV offers new opportunities
to increase the flexibility and power of the network, but there
are many challenges to be overcome before this can be
achieved.

How Can Service Graphs Be Encoded by Applications that
Speak to the Controller? How can an SDN application speak
of logical topologies, especially for each virtual network? We
believe that this means the application has to base the descrip-
tion on service names and logical connections between for-
warding entities as well as service functions and controller
functions required for each virtual network. The controller
will then have to translate that abstract specification to a
physical topology. The question then arises as to whether the
translation from service name to physical entity happens at
the controller or at the network entity. If the network entities
only understand addresses (e.g., loopback addresses), it will
have to be performed at the controller. If the network entities
understand names, we could go one step further and have the
controller speak of service function names that are dynamical-
ly instantiated at a given network element.

How Can SDNs Retain Control of the Network, While
Exploiting the Programmability and Visibility into Packet
Data of NFV Elements? Currently, the OpenFlow protocol
assumes that network elements are simple hardware switches
only capable of matching a packet header to a pattern and
then performing a basic action such as forwarding it out a spe-
cific port. As we move toward software-based network func-
tions, this paradigm may be unnecessarily restrictive. A smart
data plane will require a more expressive interchange with the
control plane, perhaps allowing the SDN controller to provide
snippets of code to software-based network elements and mid-
dleboxes. This would allow network elements to perform
more complex algorithms on each flow, while still granting the
SDN controller the necessary control over network behavior.

How Does a Software-Based Network Affect the Security of
Data Center and Wide Area Networks? A more powerful and
flexible network may become a ripe target for attackers since
network elements have access to view and manipulate packet
data, and the controller can redirect packets in arbitrary ways
without input from the flow’s endpoints. Ensuring the integri-
ty of a software-based network will be an important concern
so that both the controller and data plane elements can trust
one another. A related challenge is that many applications
encrypt traffic before sending it over the network; how will
encrypted payloads limit the capabilities and benefits that a
smart data plane can provide?

Conclusion

Software-based elements are coming to both the network’s
control plane and data plane. While this brings the potential
to build more dynamic networks at lower cost, it also intro-

duces new challenges. We believe that the strict separation of
an intelligent control plane and a simple data plane will con-
strain us in achieving the vision of network flexibility desired
by service providers and data center operators. Instead, both
SDN and NFV will have to evolve to maximize the benefits of
coordinated, software-based control and data planes. Part of
that evolution will be in moving a limited amount of autono-
my for decision making to a “smarter data plane.”
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