
Design Challenges for High Performance, Scalable NFV
Interconnects

Guyue Liu
The George Washington University

K. K. Ramakrishnan
University of California, Riverside

Mike Schlansker
Hewlett Packard Labs

Jean Tourrilhes
Hewlett Packard Labs

Timothy Wood
The George Washington University

ABSTRACT
Software-based network functions (NFs) have seen growing inter-
est. Increasingly complex functionality is achieved by having mul-
tiple functions chained together to support the required network-
resident services. Network Function Virtualization (NFV) platforms
need to scale and achieve high performance, potentially utilizing
multiple hosts in a cluster. Efficient data movement is crucial, a cor-
nerstone of kernel bypass. Moving packet data involves delivering
the packet from the network interface to an NF, moving it across
functions on the same host, and finally across yet another network
to NFs running on other hosts in a cluster/data center. In this paper
we measure the performance characteristics of different approaches
for moving data at each of these levels. We also introduce a new
high performance inter-host interconnect using InfiniBand. We
evaluate the performance of Open vSwitch and the OpenNetVM
NFV platform, considering a simple forwarding function and Snort,
a popular intrusion detection system.

CCS CONCEPTS
• Networks → Middle boxes / network appliances; Network
performance evaluation;

KEYWORDS
Network Function Virtualization; Service Chaining; RDMA
ACM Reference format:
Guyue Liu, K. K. Ramakrishnan, Mike Schlansker, Jean Tourrilhes, and Tim-
othy Wood. 2017. Design Challenges for High Performance, Scalable NFV
Interconnects. In Proceedings of KBNets ’17, Los Angeles, CA, USA, August
21, 2017, 6 pages.
https://doi.org/10.1145/3098583.3098592

1 INTRODUCTION
Network Function Virtualization (NFV) has enabled network ser-
vices to be run on commodity servers, and replaces specialized
hardware appliances. These NFs implement a range of functionality
starting from security (Firewalls, Intrusion Detection Systems) to
improving performance (caches) and support for new applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KBNets ’17, August 21, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5053-2/17/08. . . $15.00
https://doi.org/10.1145/3098583.3098592

and protocols (TLS proxies) [10]. To support complex services a
sequence of NFs may be stitched together to create a service chain.
It is also important to have high performance as these services act
as a ’bump-in-the-wire’, requiring the components of the chain to
process packets at 10Gbps and beyond. Last, but not least, scale in
terms of handling a large number of flows and many different com-
plex service chains is key to making NFV deployable in large-scale
networks. Consequently, the NFV service chains may require the
use of multiple servers to process the packet flow at the requisite
scale and speed.

There are several possible ways to provide these large scale
middlebox functions. One approach is to have the NFs running
in containers or virtual machines on one or more hosts. This can
accommodate existing open-source middleboxes such as the Snort
[5] intrusion detection system, without rewriting NFs from scratch.
To interconnect these NFs, one may use Open vSwitch (OVS) as
an SDN-controlled switching fabric [4] that can forward packets
through a chain. However, this approach can incur performance
overheads when packets arrive at high speed, and limits the service
chain flexibility since rules are typically pre-installed.

Recently, new NFV platforms [6, 8, 9, 14] have been proposed to
accelerate individual NF processing as well as moving packets be-
tween NFs. Compared to a general purpose switch such as OVS, an
NFV platform can be architected for more efficient and flexible ser-
vice chaining. For example, NFV platforms provide shared memory-
based communication [8, 14], automatic load balancing [14], and au-
tomated placement [9, 13]. These platforms can easily provide line
rate performance when built upon high performance I/O libraries
such as DPDK [1] or netmap [11]. However, they are typically lim-
ited to a single host and have only been evaluated using simple NFs
because they require modifications to legacy middleboxes.

Supporting complex service chains and maintaining high per-
formance requires efficient data movement. This begins with deliv-
ering data from the NIC to the NF, being able to move the packet
data between different NFs, and finally moving it across hosts. In
this paper we characterize the performance of packet movement
at each of these levels using different technologies. The ability to
load balance the workload across multiple NF instances, and imple-
menting the service chain by having the NF pipeline span multiple
hosts substantially enhances the scalability of the NFV platform. A
concern however when multiple hosts are used is the additional
overhead involved when going across hosts, and more importantly,
the latency penalty involved. We meet the challenge of chaining
across hosts by utilizing a new InfiniBand-based interconnect that
supports higher throughput and lower latency, generally at lower
cost per switch port than Ethernet. We provide preliminary results

49

https://doi.org/10.1145/3098583.3098592
https://doi.org/10.1145/3098583.3098592

KBNets ’17, August 21, 2017, Los Angeles, CA, USA G. Liu et al.

server

NIC NICNIC NICNIC NIC

verbsVxLAN

OpenNetVM

SnortSnort Snort
capture
API: nflib

NIC API:
DPDK

Input/Ouput Links Infiniband LinksEthernet Links

(a) OpenNetVM

server

NIC
API

Open vSwitch

VxLAN

NIC NICNIC NIC
Ethernet LinksInput/Ouput Links

VM

Snort
VM

Snort
VM

Snort
capture
API

VM
API

(b) Open vSwitch

server

Target

 chaining server

Chaining

 NF server

Chaining

NF
1.1

NF
1.2

NF
1.3

 NF server

Chaining

NF
2.1

NF
2.2

NF
2.3

Fabric Links

server

Source
LAN LANOutput

Link
Input
Link

(c) Testbed Setup

Figure 1: (a) OpenNetVM supports sharedmemory-based communication betweenNFs that run as separate processes or containers.
Either VXLAN over Ethernet or InfiniBand verbs are used for multi-host service chaining. (b) OVS supports several different
VM/capture APIs that determine how packets move from the host-based switch to the NFs. VXLAN encapsulation is used for
inter-host service chains. (c) Our testbed runs NFs on two NF Servers, with a Chaining Server acting as a load director between
them.

on how this interconnect can achieve the goals of scalability and
high performance.

Our measurement study focuses on running real network func-
tions in a realistic, multi-host environment. We show the impor-
tance of kernel bypass, even for heavy weight NFs, and the benefits
of an optimized switching layer for building chains of network
functions. We have extended the OpenNetVM platform with a uni-
fied communication interface allowing packets to be easily routed
to NFs across multiple hosts over either Ethernet (with VXLAN
encapsulation) or InfiniBand. Our results show the latter can im-
prove latency and provide a notable bandwidth increase which is
especially important when NFs are placed in a way that requires
multiple fabric traversals to complete a service chain.

In the next section we overview the design of OpenNetVM’s
unified NFV interconnect and compare it to Open vSwitch. We
then describe the testbed used for our measurement study before
considering performance of network function service chains on a
single or multiple hosts. Finally we discuss the primary insights
from our results and conclude.

2 NFV INTERCONNECTS
We now describe how packets flow through NFs in our OpenNetVM
NFV platform and the Open vSwitch environment, when scaling
service chains across one or more hosts.

2.1 OpenNetVM
OpenNetVM provides an NFV management layer for flexible and ef-
ficient service chaining, shown in Figure 1(a). OpenNetVM supports
a unified abstraction to represent both intra-host and inter-host
links, providing several benefits: it grants NFs a convenient ab-
straction so that they can direct packets to other services with no
knowledge of service placement; it hides the complexities of the un-
derlying interconnection technologies from the NF and offloads the
performance optimization tasks to the underlying NFV framework;
and it allows new interconnect technologies to be used.

Our original OpenNetVM prototype [14] only supported an intra-
host link using shared memory. In this work we add support for

inter-host links (termed “Fabric Links") using either Ethernet or
InfiniBand. In all cases, OpenNetVM leverages DPDK for kernel
bypass, allowing packet data to move directly from the NIC to
userspace memory pools and zero-copy transfer between NFs. NFs
specify the next-hop destination NF by a service ID in the packet
descriptor returned to the manager after processing, which then
determines the right interconnect to use to reach an NF with the
associated service ID (e.g., shared memory for an NF on the same
host, Ethernet or an InfiniBand link for an NF on a remote host).
Single-Host Shared Memory: OpenNetVM leverages DPDK’s
support for shared pools of huge pages across processes (or contain-
ers), allowing zero-copy access to packet data. Ring buffers used
between the management layer and each NF exchange lightweight
packet descriptors with meta data indicating the next steps in the
service chain. This can be used for either serial chaining, where
packets go through a series of different NF services, or load balanc-
ing, where packets are split up and sent to one of several replicas
of a service chain. OpenNetVM supports a flow table defining the
service chain for each flow, and will automatically distribute flows
to NF replicas of the same service based on a symmetric 5-tuple
receive side scaling (RSS) hash. However with this approach, con-
tention on shared data structures and NUMA effects can reduce
performance when scaling beyond a small number of processing
cores.
Multi-Host Ethernet: Ethernet is the typical interconnect used
to cross hosts for scaling. However, supporting flexible service
chains spanning hosts requires the outgoing packets be encapsu-
lated (e.g., with a VXLAN or NSH header) to ensure proper routing
(indicate the next-hop’s host) and to indicate how packets should
be processed at the next step in the chain. We have implemented
a VXLAN overlay encapsulation protocol to be compatible with
existing networks and route packets on any Ethernet based fabric.
The OpenNetVM manager is responsible for setting up VXLAN
tunnels and selecting the right tunnel to exchange packets and
metadata. We have expanded the OpenNetVM manager to contact
a Zookeeper based registry of NF services, allowing it to know
which service types are available on each host. We use the flow

50

Design Challenges for High Performance, Scalable NFV Interconnects KBNets ’17, August 21, 2017, Los Angeles, CA, USA

hash for deciding which replica to send to, when a service exists
on several hosts. More sophisticated NF selection and placement
is desirable (our future work). This approach of using Ethernet is
likely to incur overheads, including additional latency.
Multi-Host InfiniBand: InfiniBand is another approach to inter-
connect hosts in the data center and has been used in high per-
formance computing. Compared to Ethernet, it features higher
bandwidth, lower latency, and supports RDMA capabilities, while
incurring low CPU overhead for messaging. These features make
it possible to improve network performance [7, 12] and attractive
for NFV service chaining, especially when service chains require
packets to traverse multiple hosts. If the placement of NFs requires
a flow to bounce back and forth between several hosts to imple-
ment a service chain, it is highly desirable that the interconnect
fabric linking the NFV cluster have higher bandwidth than the
input traffic link and also have low latency.

InfiniBand hosts communicate using queue pairs (QPs), and In-
finiBand NICs usually support several different transport types and
’verbs’. In our current implementation, the NF manager configures
QPs and uses the SEND verb with unreliable datagram (UD) to pass
data (note that the VXLAN encapsulation for Ethernet is UDP-based
which is also unreliable). One limitation of our current approach
is that the packet pools for DPDK and InfiniBand are separate, re-
quiring a copy to cross the boundary; we believe that this could be
optimized away in our future work.

2.2 Open vSwitch
Open vSwitch (OVS) is a popular software switch that can be used
in NFV deployments [10]. OVS can be used to switch traffic between
VMs on a single host or between different hosts. OVS is managed
by an SDN control-data plane interface such as OpenFlow [3] for
installing rules. Rules can be proactively setup to support serial
chaining or load balancing. We run NFs within Virtual Machines
(VMs), using QEMU/KVM. As shown in Figure 1(b), OVS has several
interfaces, from NIC to OVS, from OVS to VM, and from VM to the
NF, all of which can impact performance.
NIC and NF APIs: Unlike OpenNetVM which is tightly integrated
with DPDK, OVS supports a kernel- or DPDK-based NIC interface.
We tested two flavors of OVS. OVS-kernel, the traditional version
of OVS using a Linux kernel module, with its NIC API being the
kernel driver API and its VM API being vhost-net [2]. The other
OVS flavor is OVS-DPDK, which offers kernel bypass. For the
latter, its NIC API is DPDK and its VM API is vhost-user [4]. This
provides zero-copy I/O from the host NIC to the VM driver, but
full zero-copy to the NF also requires an appropriate “capture API”
inside the VM. We use the DPDK-enabled capture API for Snort
to bypass the VM’s kernel. Our measurement study explores the
impact of the different combinations of these APIs.
Single-Host Load Balancing and Chaining: For single host ex-
periments, we design simple OpenFlow rules to direct packets be-
tween the physical NIC ports and the VM interfaces. For serial
chaining, we use rules to connect the adjacent ports of each NF. For
load balancing, we use the OpenFlow “select group” construct to
pick one of several actions (i.e., destination NFs) for a flow based
on a static IP 5-tuple hash.

Multi-Host Chaining: For multiple NF server experiments, we
use VXLAN encapsulation (without an NSH header) for routing
packets from one NF to the next. The VNI header field is used to
encode the virtual port of the VM on the destination NF server. The
OVS switch encapsulates and forwards the packet based on rules
defined with OpenFlow; the remote host’s OVS then decapsulates
the packet before transmitting it to the appropriate NF.

3 TESTBED SETUP
Our testbed was designed to test various configurations of NFV
chaining. We investigate both chaining on a single NF server, i.e.,
scale up, and chaining across multiple NF servers, i.e., scale out. We
also explore different configuration of NF chains as well as load
balancing across NFs. In both cases, we replicate the same NF to
form the chain and simplify analysis.

3.1 Network Functions and Configuration
In our experiments, we use both simple NFs such as ‘L2fwd’ and
real NFs such as Snort (version 2.9.8.3). Simple NFs are easy to
support and require minimal modifications, but they are stateless,
not sensitive to packet payloads, and often have less computation
than real NFs.

Snort processes Ethernet packets against a set of rules. We con-
sider Heavy Snort, which uses the full set of community rules [5]
and most of these rules perform string matching in the packet pay-
load. We also tested a Light Snort with less computation, where
packets are filtered against several IP 5-tuple rules (i.e. no payload
matching).

Snort provides a Data Acquisition library (DAQ) which is an
abstraction layer for packet I/O operations (i.e., its capture interface).
We evaluate AFPK capture which gets Ethernet packets from the
Linux network driver via a special socket, andDPDK capture which
allows Snort to bypass the kernel and get packets directly from the
virtual NIC. We also implemented a new DAQ for Snort so that it
can get packets from the OpenNetVM NF manager.

We use OVS version 2.6.1 and QEMU/KVM version 2.6.2, where
each VM has one CPU core, 1GB of memory, runs Debian Jessie
and has two virtual NICs connected to OVS. We use DPDK 16.07
for both OVS and OpenNetVM. When using OpenNetVM, NFs like
Snort run as a process. While this has somewhat less overhead than
the VMs used by OVS, we believe this improvement is marginal
compared to dominant effects of the switching plane used.

For throughput testing, we use iperf with 10 parallel TCP flows
between the source and sink. For load balancing tests, we use 10 TCP
flows multiplied by the number of NF configured, with a maximum
of 127 flows. We use netperf for latency test, and unless mentioned
otherwise, use the TCP_RR mode with 64 bytes packets.

3.2 Physical setup
Our testbed setup consists of five servers. Two NF servers are
dedicated to run NF instances and one chaining server is used
to route the packets in the service chain and load balance traffic as
shown in Figure 1(c). Each NF server connects to the chaining server
via a separate 10Gb/s Ethernet link and a separate InfiniBand link.
We use two other servers as traffic source and target to emulate
external Ethernet traffic, each server is connected to a separate

51

KBNets ’17, August 21, 2017, Los Angeles, CA, USA G. Liu et al.

10Gb/s Ethernet LAN. For single host testing, they are connected
directly to one of the NF servers, and no chaining server is used.
For multi-host testing, they are connected to the chaining server.
The detailed configurations are as follows:
NF Servers: 2 HP Z840: each has 128 GB RAM, two Intel Xeon
E5-2650-v3 (2.30GHz) processors providing 20 cores, running De-
bian Jessie with Linux kernel 4.6.0 [2], a Intel X710-DA2 10Gb/s
Ethernet card and a Mellanox ConnectX-3 Pro 56Gb/s InfiniBand
card.
Chaining Server: 1 HP Z840: 128 GB RAM, two Intel Xeon
E5-2643-v3 (3.40GHz) processors providing 12 cores, four 10Gb/s
Ethernet ports and two 56Gb/s InfiniBand ports, with the same NIC
type, OS and kernel as above.

4 SINGLE HOST CHAINING
The capture and NIC APIs that an NF uses to interface with the
NFV dataplane impact chaining performance. Figure 2 shows the
performance of a chain of Heavy or Light Snort instances on a
single server. We consider different combinations of Snort and OVS
with or without kernel bypass, and our OpenNetVM platform. The
chain length is the number of Snort instances the packets have to
go through.

In Figure 2(a) we see that OpenNetVM provides higher through-
put (2.1-2.7 Gbps) than full kernel bypass (dpdk-ovs-4 dpdk-snort,
2.1 Gbps) when running Light Snort. This illustrates the benefit of
designing our architecture from the ground up for handling NF ser-
vice chains, unlike OVS which is a general purpose software switch.
Note that as the chain length increases, the load on the NFV switch-
ing layer rises, i.e., a chain of 10 NFs requires the dataplane to do
ten times as much work per packet that enters the system compared
to running a single NF. When OVS uses the default configuration
(dpdk-ovs dpdk-snort), after five NFs, OVS becomes a bottleneck,
and throughput drops linearly. Using multiple threads for OVS
improves this situation; when OVS is configured to use 4 DPDK
threads on 4 CPU cores (dpdk-ovs-4 dpdk-snort), that bottleneck is
removed and throughput is flat across the chain length.

We next consider Heavy Snort, which has a maximum through-
put of 712 Mbps for OpenNetVM. Due to the large amount of pro-
cessing in the Heavy Snort NF, its throughput is lower than the
throughput achieved by the non-kernel bypass techniques with
Light Snort. Thus, we might expect that the Heavy Snort NF is the
bottleneck, and data movement is a relatively smaller proportion
of the overhead and adding kernel bypass in OVS should have a
correspondingly small impact on throughput. But as we observe
in Figure 2(b), even with the NF processing being the bottleneck,
there remains a significant performance difference (as much as 40%)
between the kernel and DPDK based approaches. This is shown in
more detail in the table below comparing performance of a single
Heavy Snort NF running on OVS with each possible combination
of kernel bypass.

Using kernel bypass for either the NIC (OVS-DPDK) or the
capture interface (Snort-DPDK) improves throughput and latency,
while using it at both layers compounds the benefits. The fact that
the benefit of DPDK is significant even with just one of the two
interfaces is encouraging for multi-tenant or cloud environments
where users may not have complete control over the stack—in such

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10

T
h
ro

u
g

h
p

u
t(

M
b

p
s)

Chain Length

kernel-ovs dpdk-snort
dpdk-ovs afpk-snort
dpdk-ovs dpdk-snort

dpdk-ovs4 dpdk-snort
OpenNetVM

(a) Light Snort

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10

T
h
ro

u
g

h
p

u
t(

M
b

p
s)

Chain Length

kernel-ovs dpdk-snort
dpdk-ovs afpk-snort
dpdk-ovs dpdk-snort

OpenNetVM

(b) Heavy Snort

 0
 100
 200
 300
 400
 500
 600
 700

 0 2 4 6 8 10

La
te

n
cy

(u
s)

Chain Length

kernel-ovs dpdk-snort
dpdk-ovs afpk-snort

dpdk-ovs dpdk-snort
OpenNetVM

(c) Latency with Heavy Snort

Figure 2: Longer chains increase load on the switching plane,
particularly for lighter weight network functions.

cases the tenant may only have control over the VM capture in-
terfaces but not the NIC and VM interfaces, and vice versa for the
provider. Naturally, full zero-copy from the NIC to the NF (i.e.,
Snort-DPDK and OVS-DPDK) provides the best performance, an
improvement of 3.25X in throughput and 2.3X in latency compared
to using kernel interfaces at both levels. OpenNetVM raises this
even higher, with throughput of 712 Mbps and latency of 73µs .

OVS-Kernel OVS-DPDK
Snort-NFQ 176 Mbps / 255 µs 424 Mbps / 171 µs
Snort-AFPK 192 Mbps / 179 µs 513 Mbps / 142 µs
Snort-DPDK 448 Mbps / 129 µs 624 Mbps / 76 µs

Finally, in Figure 2(c) we show the latency of Heavy Snort with
each approach. Latency for Light Snort (not shown) is almost identi-
cal, as 64 bytes packets have nearly no payload. As expected, longer

52

Design Challenges for High Performance, Scalable NFV Interconnects KBNets ’17, August 21, 2017, Los Angeles, CA, USA

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2 4 6 8 10

T
h
ro

u
g

h
p

u
t(

M
b

p
s)

#Snort Replicas

kernel-ovs afpk-snort
kernel-ovs dpdk-snort

dpdk-ovs afpk-snort
dpdk-ovs dpdk-snort

OpenNetVM

Figure 3: Load balancing Snort replicas on a single host.

chains incur greater delay since a packet needs to go through more
processing stages. The dpdk-ovs afpk-snort line has particularly high
latency as the chain length increases. We believe this is because
it adds extra load on the NF itself (which is the main bottleneck,
not the OVS switching layer), leading to queue buildup in the VM’s
kernel.
Load Balancing To achieve line rate performance, a host might
need to run multiple copies of a network function and load balance
packets across them. This is shown in Figure 3 where we com-
pare all four OVS configurations and OpenNetVM when running
Heavy Snort. We see that dpdk-ovs dpdk-snort and OpenNetVM pro-
vide a significant improvement over the kernel based approaches–
approximately a 25% increase in throughput. The figure shows a
good linear speedup when increasing the number of NF replicas;
however, it should be noted that this scalability relies on being able
to evenly balance load across all replicas. For skewed workloads
(e.g., where some flows require more processing than others), a
platform such as Open vSwitch, which uses pre-configured flow
rules for static load balancing, will not be able to provide good scal-
ability since NFs could be unevenly loaded. In contrast, a dedicated
NFV platform like OpenNetVM could dynamically adjust the load
balancing configuration based on each NF’s current load.

5 MULTI-HOST CHAINING
Having multiple NF servers allows scaling NF chains beyond what
is possible with a single host. To simplify analysis, we used a sin-
gle dedicated “chaining server” which sits between the two NF
Servers to configure either load balancing or cross-host chains (see
Figure 1(c)). However, our framework can support other configu-
rations, such as the chaining server also hosting NFs, or multiple
input and output links being distributed across the NF servers.
Chaining Placement: We implemented two policies emulating
the best and worst cases for NF placement on the two NF servers
with chains up to length 20. In the ideal placement, flows traverse
the first 10 NFs of the chain entirely on the first server before being
rerouted to the second NF server for the remaining NFs of the chain;
we call this setup “Shortcut Chaining” (sc). At the other extreme,
“Back-and-forth” (bf) chaining requires bouncing between NFs on
the two hosts for every hop in the chain, e.g., traversing NF 1.1, 2.1,
1.2, 2.2, 1.3, etc., using the numbering of Figure 1(c). Thus, packets
traverse the fabric links multiple times.

Figure 4 shows the impact of the placement and chaining policy
with OVS. In this experiment, both Light Snort and l2fwd are used,

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20

T
h
ro

u
g

h
p

u
t(

M
b

p
s)

Chain Length

dpdk-l2fwd bf
dpdk-l2fwd sc
dpdk-snort bf
dpdk-snort sc

vxlan capacity

Figure 4: Throughput of a NF chain across multiple hosts.

and each OVS instance is configured with 6 DPDK threads on 6 CPU
cores to reduce chaining bottlenecks. The back-and-forth chaining
causes packets to make a round trip over a fabric link for each NF
hop in the chain. The throughput of l2fwd NFs with back-and-forth
policy (dpdk-l2fwd bf) is almost identical to the VXLAN link capac-
ity (2*10Gbps) divided by the number of packet traversals (vxlan
capacity), thus, the fabric link is the bottleneck. The throughput
of Light Snort NFs with back-and-forth policy (dpdk-snort-bf) is
limited by Snort processing for short chains (up to length 6, at 2.1
Gb/s), and beyond that by fabric link bandwidth. Similar experi-
ments for Heavy Snort (not shown) show throughput mostly flat
around 615 Mb/s with only a slight decrease as the chain length
increases, so for Heavy Snort, there is enough fabric bandwidth and
Snort’s CPU processing is consistently the bottleneck. Thus, if a
NFV framework needs to provide flexible NF placement and chain-
ing/routing, sufficient fabric capacity needs to provided, possibly
well in excess of the input link rate.

An alternative to increasing fabric capacity is smarter NF place-
ment. The shortcut policy minimizes the use of fabric links by
co-locating NFs based on their affinity. The throughput of l2fwd
NFs with the shortcut policy (dpdk-l2fwd-sc) is higher than the
back-and-forth policy, but it also reduces with chain length. When
using only one NF server (chain length 1 to 10), throughput de-
creases quickly, indicating chaining is the bottleneck, despite OVS
having 6 threads. When adding the second NF server (chain length
going from 11 to 20), the first NF server is still the bottleneck. Only
when the chain on the second server starts to be long is there fur-
ther throughput reduction. This confirms that the amount of CPU
resources dedicated to chaining needs to be balanced with the pro-
cessing needs of the NFs. However, by dedicating CPU cores for
chaining (i.e., OVS threads), we reduce the number of CPU cores
available for NF processing.

For Light Snort with the shortcut policy (dpdk-snort-sc), through-
put is flat around 2.1 Gb/s, which means that OVS chaining has
enough resources and Snort processing itself now is the bottleneck.
The performance is almost identical to the single host experiment
(since we are not traversing the fabric link multiple times). Similarly,
throughput for Heavy Snort (not shown) is mostly flat around 615
Mb/s, indicating that the addition of the chaining server has mini-
mal impact on the performance for NFs having medium to heavy
processing. The results so far for multi-host chaining were based
on using OVS and Ethernet. We now turn to look at OpenNetVM
and InfiniBand for multi-host chaining.

53

KBNets ’17, August 21, 2017, Los Angeles, CA, USA G. Liu et al.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20

La
te

n
cy

(u
s)

Chain Length

OpenNetVM-ethernet bf
OpenNetVM-ethernet sc

OpenNetVM-infiniband bf
OpenNetVM-infiniband sc

Figure 5: Latency of a Snort chain across multiple hosts.

Fabric Type: The prior experiments illustrated that the Ethernet
fabric link can become a bottleneck, particularly for back-and-
forth chaining. We measure the maximum throughput with Open-
NetVM’s InfiniBand interconnect when directing packets through
a 2 NF chain, one per NF Server. To avoid the input Ethernet link
being the bottleneck we generate traffic on the chaining server
itself. With 1024B packets we achieve a throughput of 14 Gbps,
while 1500B packets raise the throughput to 16.7 Gbps. While our
InfiniBand link supports a theoretical max bandwidth of 56 Gbps,
our current implementation incurs extra copies to move packets
between the InfiniBand QP and the DPDK packet data structures.
Thus, such a chain implementation incurs two additional copies on
each of the three servers in order to traverse the chain. We believe
that this can be optimized by combining the DPDK packet pool
with the InfiniBand Queue Pair data region, as well as increasing
the number of QPs to increase parallelism.

Figure 5 shows the impact of the fabric type (Ethernet or In-
finiBand) when running Heavy Snort chains with OpenNetVM.
Latency for Light Snort (not shown) is almost identical, as 64 bytes
packets have minimal payload. Serial shortcut chaining (sc) pro-
vides the lowest latency, since for all chain lengths, packets need to
traverse the fabric network either 2 or 4 times (from the chaining
server to NF Server 1 and back, and if needed to NF Server 2 and
back). On the other hand, back-and-forth chaining may need up to
40 traversals for the longest chain length. Thus shortcut chaining
(representing an optimal NF placement) reduces latency by between
22-35% depending on chain length. Using the InfiniBand network
also provides a significant improvement, lowering latency in the
back and forth case between 18-37%. These benefits compound, so
using InfiniBand and shortcut chaining can provide up to a 59%
benefit compared to the worst case using VXLAN over Ethernet.
Scaling Out NFs: The technique and policy for load balancing with
two NF servers is the same as for a single server. We alternate hosts
when adding replicas. Figure 6 shows that throughput scales up as
expected up to the input line rate (10 Gb/s). With the number of
instances ranging from 1 to 10, the throughput is only slightly lower
than the single server case, despite adding the chaining server, the
fabric links, and having a different NF placement.

6 SUMMARY
We have explored the impact of different NFV interconnect tech-
niques with single and multiple hosts. Our measurement study
provides the following insights:

 0

 2000

 4000

 6000

 8000

 10000

 0 4 8 12 16 20

T
h
ro

u
g

h
p

u
t(

M
b

p
s)

#Snort Replicas

kernel-ovs dpdk-snort
dpdk-ovs dpdk-snort

OpenNetVM-ethernet
OpenNetVM-infiniband

Figure 6: Load balancing Snort across multiple hosts.

• Kernel bypass provides a substantial improvement not only for
minimalist network functions such as forwarding, but also for
more complex network-resident functions, e.g., we get 4X the
throughput with OpenNetVM compared to kernel based process-
ing, even for heavy weight Snort which performs deep packet
inspection.

• The switching layer within a host must be scalable to multi-
ple cores to support long service chains and balance resources
between chaining and processing. A general purpose software
switch such as OVS can incur higher costs for NF chaining and
may lack information needed for effective load balancing.

• An Infiniband-based interconnect can provide significant latency
reductions and higher bandwidth, reducing the impact of NF
placement decisions that require chains to be spread across mul-
tiple hosts. However, optimizing an NF platform to utilize both
Ethernet and Infiniband with zero copy poses new challenges.
This is our current work.

7 ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their valu-
able comments on this paper. This work was supported in part by
Hewlett Packard Labs, NSF grants CNS-1422362, and CNS-1522546.

REFERENCES
[1] Data plane development kit (dpdk). http://www.dpdk.org/.
[2] Linux kernel. https://www.kernel.org/.
[3] Onf. openflow switch specification version 1.5.1.

https://www.opennetworking.org/sdn-resources/technical-library.
[4] Open vswitch. http://www.openvswitch.org/.
[5] Snort. https://www.snort.org/.
[6] M. Honda, F. Huici, et al. mSwitch: A highly-scalable, modular software switch.

In SOSR’15. ACM.
[7] S. Ma, J. Kim, and S. B. Moon. Exploring low-latency interconnect for scaling

out software routers. In IEEE HiPINEB, 2016.
[8] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, et al. ClickOS and the art

of network function virtualization. In USENIX NSDI, 2014.
[9] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and S. Shenker.

E2: A framework for NFV applications. In SOSP’15. ACM.
[10] A. Panda, S. Han, K. Jang, et al. Netbricks: Taking the V out of NFV. In USENIX

OSDI., 2016.
[11] L. Rizzo. netmap: A novel framework for fast packet i/o. In USENIX ATC, 2012.
[12] T. Yu, S. A. Noghabi, S. Raindel, H. H. Liu, J. Padhye, and V. Sekar. Freeflow: High

performance container networking. In ACM HotNets, 2016.
[13] W. Zhang, G. Liu, A. Mohammadkhan, J. Hwang, K. K. Ramakrishnan, and

T. Wood. SDNFV: flexible and dynamic software defined control of an application-
and flow-aware data plane. In Middleware Conference, 2016.

[14] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi, K. Ramakrishnan,
and T. Wood. OpenNetVM: A platform for high performance network service
chains. In HotMiddlebox. ACM, 2016.

54

	Abstract
	1 Introduction
	2 NFV Interconnects
	2.1 OpenNetVM
	2.2 Open vSwitch

	3 Testbed Setup
	3.1 Network Functions and Configuration
	3.2 Physical setup

	4 Single Host Chaining
	5 Multi-Host Chaining
	6 Summary
	7 Acknowledgements
	References

