
REINFORCE: Achieving Efficient Failure Resiliency for Network
Function Virtualization based Services

Sameer G Kulkarni
∗
, Guyue Liu

‡
, K.K. Ramakrishnan

†
, Mayutan Arumaithurai

∗
,

Timothy Wood
‡
and Xiaoming Fu

∗

∗
University of Göttingen, Germany,

‡
George Washington University,

†
University of California, Riverside.

ABSTRACT
Ensuring high availability (HA) for software-based networks is a

critical design feature that will help the adoption of software-based

network functions (NFs) in production networks. It is important

for NFs to avoid outages and maintain mission-critical operations.

However, HA support for NFs on the critical data path can result in

unacceptable performance degradation. We present REINFORCE,

an integrated framework to support efficient resiliency for NFs

and NF service chains. REINFORCE includes timely failure detec-

tion and consistent failover mechanisms. REINFORCE replicates

state to standby NFs (local and remote) while enforcing correct-

ness. It minimizes the number of state transfers by exploiting the

concept of external synchrony, and leverages opportunistic batch-

ing and multi-buffering to optimize performance. Experimental

results show that, even at line-rate packet processing (10 Gbps),

REINFORCE achieves chain-level failover across servers in a LAN

(or within the same node) within 10ms (100µs), incurring less than

10% (1%) performance overhead, and adds average latency of only

∼400µs (5µs), with a worst-case latency of less than 1ms (10µs).

CCS CONCEPTS
• Networks → Middle boxes / network appliances; Network
management; Network reliability; • Computer systems organi-
zation→ Availability;

KEYWORDS
Network Functions (NF), Service Function Chains (SFC), Fault-

tolerance, Availability, Resiliency.

ACM Reference Format:
Sameer G. Kulkarni, Guyue Liu, K. K. Ramakrishnan, Mayutan Arumaithu-

rai, Timothy Wood, Xiaoming Fu. 2018. REINFORCE: Achieving Efficient

Failure Resiliency for Network Function Virtualization based Services. In

The 14th International Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’18), December 4–7, 2018, Heraklion, Greece. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3281411.3281441

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6080-7/18/12. . . $15.00

https://doi.org/10.1145/3281411.3281441

1 INTRODUCTION
Fault Tolerance (FT) and High Availability (HA) are important

concerns for various network services. A number of studies show

that middleboxes fail [16, 35] and software failures [17, 18, 39] occur

often. Recent work [35] estimates roughly 40% of network failures

are caused by middleboxes, and the measurements on network

failures by Gill et al. [16] indicate that load balancers have the

highest failure probability. Nearly a third (31%) of device failures

are attributed to software related issues. Since these middleboxes

operate inline with the network forwarding path, a software failure

can significantly disrupt network operations.

Failure recovery time and the overhead for providing resiliency

depends on the type of failure. For example, a crash in a software

component can be quickly detected and fixed locally by the host

operating system within a few microseconds, while recovery from

operating system failures may take at least a few milliseconds

(e.g., 10-50ms for lightweight unikernels like ClickOS [28] and

Mirage [27]) to reboot and restore the device. Hardware failures

such as link and node failures may take seconds or more.

Network Function Virtualization (NFV) implements network ser-

vices and middlebox functions (e.g., load balancers, firewalls, NATs,

caching proxies) in software which can then be run on off-the-shelf

commodity servers, avoiding the use of dedicated purpose-built

hardware. However, an NFV-based data plane must compensate

for the potential lower reliability of commodity hardware [11]. In

addition, the presence of multiple layers of software including hy-

pervisors or container libraries, guest OSes, system and application

software, increase the chance of software failures. In this paper, we

present REINFORCE, an integrated framework to support efficient

resiliency for NFs and NF service chains.

Multiple NFs may be composed into a service chain run on a sin-

gle node, either as consolidated functions in a single process [26, 32],

or in a pipelined fashion [28, 44]. Of course, scale-limitations may

require the service chain to span multiple nodes. Our failure re-

siliency framework addresses both cases, and we seek to coherently

deal with all different kinds of failures, e.g., software failures includ-

ing the failure of an individual NF instance, and hardware failures

such as node and link failures, or power outages.

Previous work such as FTMB [40] and Pico Replication [37] have

tried to address fault tolerance and high availability for individual

network functions. Such approaches introduce excessive overhead

when adopted for service chains, as shown in our evaluation (§5.3).

Some chain-level approaches [15, 24] seek to provide reliability

guarantees across several NFs, but incur very high latency due

to packet buffering delays. Further, intra-node commit operations

https://doi.org/10.1145/3281411.3281441
https://doi.org/10.1145/3281411.3281441

(such as the evaluation with FTMB [40] where the logging and stor-

age components are co-located on the same node) may not factor

the network latency that can impact overall system performance.

Hence, a design choice that compensates for the network round trip

latency incurred for the inter-node commit operations is desirable.

Designing comprehensive failover mechanisms that can effi-
ciently provide fast failure recovery for single NFs and service

chains, either within a single node or spanning multiple nodes, is

the goal of our work. Additionally, REINFORCE aims to guarantee

consistency properties for NF state and packet content under all

failure situations. REINFORCE ensures the external view of the co-

herent state of an NF or a service chain with its backup is consistent

while achieving external synchrony [29, 30].

In order to ensure chain-wide correctness of operation and to

address non-determinism, we maintain two distinct types of infor-

mation for effective failure resiliency in an NFV environment: The

application state (state for an NF or chain of NFs); and the packet

processing progress (which can be characterized by a per-flow logi-

cal timestamp, as long as packets can be replayed after a failure).

Thus, when a chain of NFs is backed up on a different node, we

employ lazy checkpointing of application state to reduce overhead

during normal operation and buffer input packets at a predecessor

node in-between the checkpointing instants. These input packets

are replayed to the backup node in case of a failure. Keeping track

of packet processing progress of all the flows at least requires a

per-flow timestamp, which is the critical information necessary

to enforce correctness when the packets are replayed. The appli-

cation state (state of NF or chain of NFs) can then be correctly

recovered through replay. This allows us to commit the minimum

amount of lightweight per-flow timestamp information at a finer

timescale, while committing the more heavyweight application

state at a coarser timescale. This distinction enables REINFORCE

to achieve high performance under normal, failure-free operation.

A key insight of our work is to carefully separate how resiliency

is provided for deterministic packet processing (replay and lazy

checkpoints) from non-deterministic behavior (which requires full

checkpoints to ensure consistency). Deterministic packet process-

ing occurs when the replay of the same set of input packets at an

NF or chain of NFs has the same result, both in terms of the state of

NF(s) as well as the packets that are output on the wire from the NF

(and/or NF chain). In contrast, non-determinism may not produce

the same result upon replay. Non-determinism (ND) is not uncom-

mon, e.g., a NAT or load balancer may make a random choice for a

flow’s first packet [5, 33]. We annotate code paths which exhibit

ND, and only when replay is not possible, trigger more expensive

checkpoints to save overhead.

REINFORCE guarantees correctness and achieves external syn-

chrony by speculatively processing packets and compactly commit-

ting per-flow timestamps (recorded at checkpoints) to the standby.

We precisely replay to the backup only those input packets that

had been processed by the primary between the checkpoint instant

and a failure and coordinate checkpointing with non-deterministic

actions to avoid inconsistencies. Thus, unlike FTMB [40], REIN-

FORCE incurs no overhead for deterministic packet processing,

eliminating the need for per-packet access logs at NFs and also the

need to enforce strict ordering of packets while replaying pack-

ets at the backup. Unlike Pico Replication [37], REINFORCE hides

the replication latency and improves throughput by batching and

overlapping multiple commit transactions, while allowing NFs to

continue speculative execution with the judicious use of multiple

buffer stages. These improvements result in a dramatic performance

improvement over existing approaches. To summarize, our key

contributions include:

• Integrated resiliency framework:We present an efficient NFV

resiliency framework for DPDK [1] based network functions

and service chains with distinct local and remote redundancy

schemes (§3.1).

• Lightweight application checkpointing: We design mecha-

nisms to minimize the state that needs to be replicated to the

backup by taking advantage of logical clocks, external synchrony,
2-phase commit, and dirty state tracking to enforce correctness

before releasing packets from an NF service chain (§4.1-§4.2).

• Chain wide recovery: We develop low overhead and low la-

tency approaches for consistent recovery of all network functions

in a chain within or across hosts (§3.2-§3.3).

• Fast failure detection: We devise ways to quickly detect NF

(in order of µs), link and node failures (in ms) (§3.4).

• Optimization techniques: We exploit non-blocking, pipelined

NF processing with judicious batching and buffering to maxi-

mize throughput, minimize latency and avoid overheads during

normal operation of network functions (§3.6).
Source code and artifacts of REINFORCE are shared online.

1
.

2 DESIGN CONSIDERATIONS
There are a number of key requirements for building an NF re-

siliency framework for service chains:

Correctness and recovery transparency: NF state must be preserved

and consistently recovered across the replica nodes in the event of

a failure. In addition, for a service chain, it is necessary to ensure

that all the NFs in the chain are able to process flows without

interruption, by preserving the necessary processing state of each

of the NFs in the chain.

Low overhead: NFs are typically expected to process millions of

packets per second and serve large numbers of flows. CPU cycles

and memory bandwidth are at a premium. It is necessary to ensure

that the performance impact of resiliency support on NFs during

normal operation (processing rate and latency) is minimal.

Generality: Given the diversity of types of network services and

different deployment patterns, it is necessary to ensure that re-

siliency solution can be easily adopted for different types of NFs; it

is important that resiliency support be incorporated with minimal

modifications to the NF’s code.

2.1 Deployment and State Management
Deployment: Our implementation focuses on NFs run inside con-

tainers, although many of our techniques can be generalized to

other approaches. Containers enable cheap snapshots using tools

like CRIU (Checkpoint Restore In Userspace) [2]. Unfortunately,

these cannot be trivially applied to NFs because they do not interact

cleanly with user-space I/O frameworks like DPDK [1, 40]. Further,

they cannot provide consistent checkpoints across groups of NFs

1
https://github.com/sameergk/REINFORCE_Supplements

https://github.com/sameergk/REINFORCE_Supplements

run in different containers. For this reason, we develop a resiliency

abstraction in the NF framework that can identify just the key NF

state that needs to be backed-up in each container.

Service chaining: NFs are typically chained to efficiently process

flows through multiple functional components. For example, we

may have a Service Function Chain (SFC) for HTTP traffic to tra-

verse through a NAT, Firewall, IDS, and Load-balancer NFs [36].

The ordering of NFs needs to be preserved, even when failures

cause flows to be routed to a replica. The NF chain (ordered list)

needs to be treated as a unit of processing rather than as individual

NFs in isolation.

State characterization: NFs keep a variety of state information,

including configuration parameters, counters, flow connection sta-

tus, and application specific variables. We focus on stateful NFs, e.g.,
NAT, DPI or IDS, which may maintain global configuration state,

as well as per-flow or per-connection state. We further classify

state updates as either deterministic or non-deterministic (see more

details in §2.4). Although many common middleboxes (e.g., firewall,
IDS, IPS) do not modify packet headers at all, or if they do, modifi-

cations are deterministic for the given input packet headers [19],

we must also consider the packets traversing a service chain as

state themselves, because other NFs may modify their data (e.g.,
NAT, load balancers), and we must track their progress through the

service chain using logical timestamps. For correctness, all of this

state must be properly synchronized to the backup for every NF in

a chain.

2.2 Failure Model and Detection Schemes
Fast failure detection is a key to providing fast failover. Here, we

only consider fail-stop software and hardware failures: software

crashes, link status changes, power outages, etc.

Software failures: For software failures, we rely on low level ker-

nel events like signals, traps, and syslogs that can be effectively

checked (queried or polled) to determine the status of individual

software NFs. REINFORCE assumes that we can recover from such

failures by reloading the NF with a checkpoint of its recent state

and reprocessing any intermediate packets.

Link and server failures: For hardware failure detection, we con-
sidered various state-of-the art Layer-2/Layer-3 schemes such as

Link Aggregation Control Protocol (LACP) and Open Shortest Path

First (OSPF), including Software-defined networking (SDN) and

Openflow-based Echo and Fast Failover schemes. Ultimately, we

selected Bidirectional Forwarding Detection (BFD) [21–23], which

is a lightweight, protocol-independent liveness detection protocol

that can detect link failures in millisecond timescales. By examining

the status of multiple links we can also use BFD to detect server

failures
2
. As a layer-3 failure detection protocol, BFD is also widely

supported in hardware with ASIC-based forwarding planes.

Although the timers can be set to a value as low as 1µs, we
observed that such aggressive timeout values can result in exces-

sive false-positives. We experimented with the default BFD values

across a link connecting two nodes back-to-back with about 50%

2
BFD, by itself, does not take any remedial action when the failure is detected;

instead on failure detection, it informs the registered clients (higher level protocols) of

the non-responsive adjacency.

background traffic and observed that a timeout value below 1000µs
still resulted in occasional false-positives.

TxTs

CP

TxTs

CP

TxTs

CP

<stalled> FT
M
BCP CP VM CP

<stalled>

PALs

VOR

PALs

VOR

PALs

VOR

TxTs

Pkt Pkt Pkt<stalled> Batch 2Batch 1

TxTs

Batch ND Batch Batch<stalled>Batch ND BatchBatch

(a) Pico (b) FTMB

(c) REINFORCE

TxTs

ND Batch

Figure 1: Comparison of NFV resiliency mechanisms

2.3 Recovery: Replay vs. No-replay
Pico Replication [37] first proposed NF resiliency with a pure check-

pointing (i.e., no-replay) scheme that buffers all the output and stops

NF processing until the completion of checkpointing (CP, to assure

state consistency) as shown in Figure 1(a). However, this buffering

results in high latency and degraded throughput during normal

operation if checkpointing costs are high. This is because we need

to pause NF packet processing and also hold the processed buffer

until state is replicated, in order to ensure correctness of the state

replicated to the backup.

An alternative proposed in FTMB [40] is to maintain input packet

logs (at a predecessor node) and replay the log to reconstruct lost

state after a failure. With this approach, output packets can be

preemptively released before creating a full NF checkpoint since

the state can be recreated via replay. However, to ensure state

correctness during replay, it becomes necessary to track and commit

all possible source of non-deterministic processing before releasing

the packets. FTMB logs each access to each shared variable as

packet access log (PAL), and vector clock (VOR) of PALs across

all the threads to ensure the correct ordering of accesses to the

shared variables during replay as shown in Figure 1(b). FTMB can

output packets without waiting for NF state to be checkpointed.

By replaying the log of input packets, and the packet-access logs,

the replica can recover the lost state and be reinstated correctly in

the role of the primary NF. This approach overcomes the latency

impact for a majority of the packets, but adds complexity to NF

development and can incur high overhead to enforce sequential

ordering. FTMB needs to do full system checkpointing periodically

and halt processing for the duration of checkpointing (order of a

few milliseconds), which is shown to result in high tail latencies

and impact overall throughput.

REINFORCE uses a combination of infrequent (lazy) checkpoint-

ing and replay of packets. The key is to maintain external syn-

chrony [29]: rather than provide strict synchronization where NFs

block until replication completes, REINFORCE allows NFs to con-

tinue speculative execution of packets while a backup is performed.

Packets will only be released out of an NF service chain once the

backup has the minimum information necessary for recovering

from a failure. Relaxing the constraint of synchronous replication

and adopting external synchrony means that processing can con-

tinue through the service chain, and for subsequent packets in the

flow, while still providing consistency guarantees to clients receiv-

ing the packets. When a failure occurs, the backup node can replay

packets that have to be processed since the last checkpoint snap-

shot and update the NF application state on the backup. A logical

timestamp is used to determine the packets that have been released

since the checkpoint so that the replay process does not transmit

unnecessary, duplicate packets downstream while updating the

backup state.

2.4 Non-Determinism
NFs operating on the same input (flow of packets) can still diverge in

their internal state across multiple executions due to implicit or ex-

plicit non-determinism in the processing [7, 40]. Non-determinism

(ND) can occur due to i) dependence on hardware whose outcome

cannot be predicted, such as hardware clocks, random number gen-

erators, etc. , ii) race conditions in accessing shared variables among

NF threads, and iii) when the intermittent packets are marked for

ECN/lost/dropped, then the order of packet arrival and subsequent

processing may become nondeterministic [41]. For example, a load

balancer (even with the “Active:Active" redundancy configuration)

that assigns one server from a pool of backend servers for each TCP

connection can end up choosing different backend servers for the

same flow when the selection logic is based on system specific calls

like random(). Similarly, a rate limiter that restricts the number of

maximum sessions for a given client can end up rejecting/terminat-

ing different connections due to races in the NF threads accessing

a shared connection variable during replay.

FTMB [40] overcomes non-determinism by rigorously tracking

and ensuring that all the events that can potentially lead to non-

determinism (any shared state access and outcomes of unpredictable

system calls) are captured and committed to the stable log before

releasing the packets. This way, even benign accesses to shared

variables or non-deterministic calls (e.g., shared counters) whose

impact is unrelated to packet processing (i.e., do not impact the ex-

ternal view) are logged and enforced at the replay node. The result

is not only excessive logging overheads but also a limit on an NF’s

throughput during normal, failure-free operation. Further, with

multi-threaded NFs, during replay FTMB enforces a strict ordering

for accesses to any shared resources across multiple processing

threads. Enforcing this ordering requires more intricate instrumen-

tation of the NF’s code and affects both normal and recovery mode

performance.

As non-determinism may still occur, we present an alternative,

simpler approach to tackle it without the need for per packet ac-

cess logs or enforcing the strict ordering of packet access to shared

variables. We exploit the fact that deterministic packets can be re-

played without the need to capture the NF state. Non-deterministic

updates may typically be tied to specific packets, e.g., the first

packet in a flow that causes non-deterministic updates at several

NFs, while subsequent packets do not. However, we do not make

any assumption on when non-determinism can occur. For example,

L4-L7 NFs (say load balancing) may exhibit non-determinism after

receiving/processing a specific byte stream and can be anywhere in

the middle of the flow. When an NF performs a non-deterministic

state update (for which we require the programmer to annotate

such operations) we link it to the packet (batch) which triggered it.

Then, taking advantage of external synchrony, we only need to en-

sure that by the time the packet reaches the end of the service chain

and is ready to be sent out, all of its dependent non-deterministic

state has been checkpointed to the standby, avoiding the need to

replay it after a failure. For example, in the load balancer example,

it is sufficient to track the initial connection state update at the

start of the flow, rather than tracking and enforcing the access to

shared global counters for every packet processed by load balancer

NF threads.

3 ARCHITECTURE AND DESIGN
We present the key components of REINFORCE and briefly dis-

cuss their roles. We then describe how REINFORCE handles local

and remote failures, performs failure detection, and guarantees

correctness.

3.1 REINFORCE Components
The key components in the REINFORCE framework are shown in

Figure 2.

The NF Orchestrator is responsible for provisioning the NF Man-

ager nodes and designating the active and standby nodes for differ-

ent service chains. It also configures the BFD settings on each of

the NF Managers in the cluster.

The SDNController is responsible for populating the flow entries

and forwarding rules at each of the NF Manager nodes. In addition,

it pro-actively configures the back-up path options: a) in the case

of multiple links, it configures the alternate output ports on the

predecessor nodes of the designated active NF manager node; and

b) configures the flow rules on designated replica standby nodes.

The NF Manager is the core component of REINFORCE. It acts

as the in-host controller of coordinating NF functionality, using

DPDK’s framework for zero-copy delivery of packet data to and

between NFs of a service chain within the host. The NF manager

tracks the liveness of associated network ports (links) and the NFs

provisioned on it. It also provisions and provides the sharedmemory

pools to the NFs to exchange packets, shared memory state, and

message notifications. In addition, NF manager implements the

“packet logger" module to log and timestamp all incoming packets,

and “RSync" module to provide consistent state replication service

to the NFs. We leverage both proactive and reactive configuration

schemes along the lines of [11, 12].

Active NFs process incoming packets delivered to NFs via the NF

Manager. Each NF is integrated with a “libnf " library that provides

the necessary hooks to facilitate state checkpointing and recovery,

thus minimizing changes required on the NF.

NF Standbys can be run on either the primary host (for local

failover) or a secondary host (for remote failover). We choose an

“Active–Hot Standby" configuration for NF resiliency, where the

state updates from the active NFs are consistently committed on the

corresponding standby NFs. Software failures that can be recovered

by NF instances within the same host can be provisioned for 1:1

redundancy of active:standby NFs. We protect each individual NF

instance in a chain, thus allowing REINFORCE to be resilient to

multiple NF failures on the same node. We also support failures at

the chain level, where all network function standbys of a chain are

provisioned on a remote node (which can also host other active NFs).

This supports link and node failures for both hardware and software.

Multiple NF chains on different active nodes can be configured to

share the same standby node.

Predecessor NFV Node

NF Manager
TimeStamp

ΔTS

RSYNC

F1 TS1
TS2F2

Active NFs

libnf

Standby NFs

libnf

Shared Memory Pool

Packet Logger

NFV Node

NF Manager
TimeStamp

ΔTS

RSYNC

F1 TS1
TS2F2

Active NFs

libnf

Standby NFs

libnf

Shared Memory Pool

Packet Logger. . .

SDN Controller NFV Orchestrator

In
Packets

Out
Packets

Out
Packets

In
Packets

NF State Memory Pool

Packet Membuf Pool

Per Service shared state
Memory Pool

Figure 2: Architecture of REINFORCE (Operational symmetry retained across all the nodes in the chain). Each NFV node hosts
multiple NFs (constituting either entire or part of NF chain). Shared memory pool accessible to NF Manager, active and local
standby NFs hold the local, global and packet pools. Input packets are timestamped at the start of the chain and logged before
transmitting out to the subsequent NFV node in the chain.

The Predecessor Node is a server prior to the node hosting active
NFs, which is responsible for logging the incoming packet stream.

This is used to handle server or link failures that require the packets

to be replayed to the standbys on a remote node for recovery. If

the NF chain spans more than one node, the symmetry in our

design allows for multiple predecessor nodes like the one shown in

Figure 2. However, REINFORCE primarily addresses single node

failure (i.e., any node in the chain, except the very first predecessor

node, source or destination host) Also, only the first predecessor

node is responsible for time-stamping packets.

The libnf routine exports the necessary interfaces and provides

the common state replication/management functions to NF devel-

opers. NF developers need to annotate/set the bit field in the packet

headers to indicate the occurrence of non-deterministic updates

(pkt->header.nd = 1) for any packet(s) in a batch. libnf checks
for non-deterministic updates and correspondingly updates the NF

processing state machine to decide whether to continue the NF

processing or block/stall the processing. NF processing is blocked

if there is another non-deterministic state update while an out-

standing non-deterministic state update remains to be committed.

Further, libnf combines the batch processing of packets to the NFs

and handles the selective NF state synchronization (i.e., only the

dirtied memory is copied) to a local standby NF at the end of pro-

cessing the batch of packets. NFs only need to specify the memory

size and offset for the state update, then the libnf routine updates
the corresponding bitmap (64-bit integer) indicating the dirtied/up-

dated NF state. We expend additional CPU cycles in the active NF

to synchronize the modified NF state to the local standby NF. Nev-

ertheless, this is transparent to the NF and is completely handled

by a set of library functions implemented in libnf.

3.2 Local Resiliency
In scenarios where only software crashes have to be tolerated, the

standby NF (also termed replica or backup) is provisioned locally

by the NF Manager to provide resiliency from NF instance failures

as shown in the left part of Figure 3. After initialization, the backup

remains in a ‘Paused’ state until the NF Manager issues signals to

wake up the NF.

NF state checkpointing: We use a “no-replay" scheme to synchronize

the active and standby NFs when they are on the same host node.

We strictly enforce an “output commit" property: i.e., no output

(packets) are released by an NF until all of the corresponding NF

state is checkpointed to the standby instance. The helper library,

libnf, performs checkpointing by copying only the modified regions

of application state from the primary to standby NF memory as

described in Section 4.1. To ensure the NF memory is in a con-

sistent state while the copy is performed, we trigger checkpoints

after an NF finishes processing a batch of packets and suspend that

NF’s processing while copying is performed. The CPU overhead of

checkpointing varies based on the size of data to be synchronized.

Fortunately, since the standby is local to the same node, our eval-

uation illustrates that checkpointing can be done very efficiently

even with a batch size of only 32 packets.

Failover: Once the NF Manager detects the failure of an active NF,

it wakes up the standby, which is guaranteed to have a checkpoint

of application state consistent with the last batch of successfully re-

leased packets. The standby then restarts processing from the most

recent batch.While the primary may have speculatively processed a

portion of the batch, REINFORCE’s output commit property ensures

that the packets would not have been released, preventing duplicate

packets or any inconsistencies related to non-deterministic packet

processing. Later, if the original active NF is restored, the standby

NF is reverted back to the paused state, allowing the active NF to

continue processing packets.

Chaining: Protection of NF chains within a local node is done on a

per-NF basis. Output commit buffering is enforced at each NF in

the chain, and if one or more NFs fail, standbys will be initiated

only for the failed NFs.

3.3 Remote Resiliency
We employ both checkpointing and packet “replay" to provide

resiliency from host node failures and link failures (that result in

Node 2 (Primary)
NF Manager

TimeStamper
PacketLogger

RSync

Node 3 (Standby)
NF Manager

TimeStamper
PacketLogger

RSync

Sync Link
Egress
Switch

Node 1 (Predecessor)
NF Manager

TimeStamper PacketLogger

Primary
Link

Secondary
Link

Incoming
Traffic

X2
NF4

NF4’’

State

State

NF2 NF2’

State State

NF4’
State

NF3 NF3’
State

NF3’’
State

NF1 NF1’

State State

State
NF5 NF5’
State

NF5’’
State

StateX1

Figure 3: On the left side is the local failover of NF Instance. Upon NF1 failure in Node-1, NF Manager initiates failover seam-
lessly to local replica NF1’. The right side represents the remote failover of NF chain (NF3, NF4, NF5) to the remote standby
node. Upon failure of Primary (Node-2), the predecessor nodes (Node-1) initiates failover by replaying the packets from its
logged buffer and also redirects the subsequent packets to the standby node.

loss of connectivity) when the backup is on another node, as shown

at right in Figure 3.

Standby server: The NF Orchestrator designates a standby node and
notifies the NF Managers at both the node with the active NFs of

the chain (Primary) and the predecessor node serving the NF chain.

The node with the Active NFs and the predecessor node monitor the

liveness status using BFD (more detail in §3.4). If an alternate route

to the primary server exists after a link failure (i.e., an alternate

output port has been configured by SDN controller), the predeces-

sor node simply redirects the traffic. If a link or node failure makes

the primary unreachable, the predecessor node initiates the replay

mode on the designated standby/backup node.

Chain-wide state checkpointing: REINFORCE relies on five key con-

cepts, i.e., i) Packet logging with timestamps, ii) Latch buffers for

external synchrony, iii) Pipelined replication, iv) Atomic state up-

dates and v) Replay-based recovery to assure consistent and effi-

cient failure resiliency of chains replicated to a secondary host. We

describe these now.

(1) Packet loggingwith logical time stamping: In REINFORCE,
all the incoming packets at the predecessor node are appended with

a logical timestamp (e.g., simple 64 bit packet counter)
3
. And all

the outgoing packets are logged (buffered) in per-port rotating log

buffers at each of the NFV nodes (predecessors).

The input packet log at the predecessor node is used to replay

packets to the standby node when an active node fails. At the

active NFV node, the timestamped value of each packet is used to

track the packet processing progress for a flow. This information is

maintained in a Transmit Timestamp (TxTs) table replicated across

the primary and backup nodes. The input logger flushes buffered

packets upon notification by the active node’s NF Manager that

they have been successfully sent out.

(2) Transmit latch buffers: Buffering packets are needed to pro-

vide external synchrony in the face of failure, but excessive buffer-

ing increases latency. Packets are stored in a latch buffer at the

end of the service chain on the primary server. If all packets pro-

cessed within a batch are deterministic (which is often the case),

3
A single nondecreasing counter is sufficient on the Logger; this, in turn, gives

monotonic per-flow counters when packets are demultiplexed on the primary node

then they can be released more quickly since the standby must

only update its TxTs table in order to know which packets must

be replayed in the event of a failure. Once a TxTs table ‘commit’

acknowledgment arrives from the standby’s RSync component indi-

cating the timestamps for deterministic packet batches are recorded,

packets are released to downstream external nodes. On the other

hand, replay is unsafe for packets with non-determinism, so REIN-

FORCE proactively pushes checkpoints for any batch that contains

non-determinism as described next.

(3) Pipelined replication: Our remote replication scheme sim-

plifies consistency and improves performance by leveraging the

local checkpoints that we already provide for software failures on

the primary host. The local replicas have their state updated at the

end of each batch of packets, as described in Section 3.2, which

gives a consistent version of the state that can be copied to the

remote server without any need to pause the primary replica. As

discussed previously, an important feature is that REINFORCE dif-

ferentiates between deterministic and non-deterministic updates

to either NF state or packet data. Deterministic updates can be

recovered via replay on the remote host, so state checkpoints can

be replicated in a lazy fashion to reduce overhead. On the other

hand, non-deterministic state updates cannot be replayed, so packet

batches with non-determinism need to have a checkpoint replicated

to the backup before they are released from the primary. Fortu-

nately, this replication can be parallelized in two ways. First, it can

be performed concurrently with subsequent packet processing in

the remainder of the chain. Second, as shown previously in Fig-

ure 1(c), an NF can continue to speculatively execute deterministic

batches of packets while a checkpoint completes, only stalling its

processing if a second non-deterministic batch occurs. To main-

tain packet ordering, deterministic packets that are processed after

the non-deterministic packets are also not released until the non-

deterministic packets are released. This gives the ability to continue

making progress subsequent to a non-deterministic packet as long

as no other non-deterministic packet processing occurs before state

corresponding to the first non-deterministic packet processing is

complete. Otherwise, we have to stall packet processing to ensure

correct recovery of the state at the remote replica in the event of fail-

ures while the state is being checkpointed and copied to the replica.

(4) Atomic State Updates: REINFORCE follows a 2-phase commit

protocol to provide atomicity between state updates at the backup

and packets released at the primary. Our commit protocol begins

when the primary sends its updated Transmit Timestamp counters

and any necessary non-deterministic state updates. The secondary

associates the logical clock values (flow-specific Transmit Times-

tamps) with the arriving checkpoint state, and ensures that both

of these are fully received for all NFs in the chain before acknowl-

edging back to the primary. Then, the primary can release packets

in its Latch Buffer to be transmitted towards their destination. The

primary then notifies the secondary, so that the latter can commit

the checkpoint state. State updates resulting from deterministic

operations are transmitted periodically; once this state has been

received, the predecessor node can be notified to clear its input log.

(5) Replay: The use of latch buffers and atomic state updates guar-

antees “external synchrony,” i.e., the state maintained at the backup

can be made consistent with the output packets that have been

released from the primary server. Note that since deterministic

application-level state is only replicated periodically, it is possible

for the standby to recover to a state where the TxTs table says that

some packets have been released, but the standby’s state does not

yet reflect the deterministic updates they should have produced.

Thus, in the event of failure, the standby NF chain must rollback to

the last checkpoint and replay any subsequent packets so that the

standby’s state matches the external view of the system (outside

of the chain) irrespective of the failure. However, since a chain has

multiple NFs and their state updates may arrive at different times,

it is possible for a packet to be replayed through some NFs which

have already processed it. We believe that NFs are already designed

to be robust to receiving duplicate packets—duplicate transmissions

are a regular occurrence in wide-area networks, and thus this does

not require special handling. The exception to this is processing

packets involving non-determinism, which is why we ensure tight

state consistency for them—such packets are only released once

their state has been confirmed by the standby, avoiding replay.

3.4 Failure Detection
NF instance Failure Detection: NF Managers are responsible to track

the liveness of all provisioned NF instances. The NFmanager detects

NF instance failures in two ways. First, it captures ’voluntary’ NF

instance failures, by registering for event notification and messages

that are triggered via OS (Linux) signals and NF instance-specific

messages, when any catchable exception occurs at an NF instance.

Second, for involuntary NF terminations, the NF manager performs

periodic (every 100 µseconds) checks via the kill(nf_pid,0) sig-

nal to check and deduce the status of all the registered active NFs.

This operation is carried out by the NF Manager’s “Monitor thread”

which is also responsible for other tasks such as NF registration,

de-registration and logging of statistics. The 100 µseconds probe in-
terval is system configurable and can be tuned with a REINFORCE

macro at the time of compilation. Even at this frequency, the CPU

overhead is less than 1%, to track the liveness of 64 NFs.

Link and Node Failure Detection:We leverage BFD [21] and adapt

its configuration settings to mirror those of S-BFD [34] for both

link and host failure detection.

BFD configuration and Tunable parameters: During node initializa-
tion, the NF Manager is configured to initiate BFD in active mode

for each of the host’s ports. We configure the BFD minimum Rx

and Tx transmit timer intervals to 500µs and the detection timeout

multiplier to 3. We operate BFD probing in two modes. When a

BFD session is initiated, BFD probes are generated at a very low fre-

quency, i.e., once every 100ms (10Hz) for the remote end to establish

the connection (discovery mode). Once the session is established,

the connectivity “echo” probe frequency on an idle link is increased

to 2000Hz (i.e., once every 0.5ms).

Further, as an optimization, we do not send any BFD probes when

there is active traffic and instead piggyback on the presence of

active traffic to indicate the port liveness. Explicit BFD liveness

detection by generating echo probes is initiated only when the

link is observed to be idle for a period of 500µs. With this setup,

we can detect link or remote node failures in less than 3ms . Not
that a link failure can be distinguished from a node failure and can

be recovered quickly at the link layer with very little overhead,

rather than initiating a software failover of the NF chain to another

node. We tune the BFD values recommended for normal network

BFD operation [21] for our NFV context, and are more aggressive,

mainly because the BFD probes are generated only on idle links.

These BFD parameters (probe interval and timeout multipliers) are

system tunable parameters, exported as macro variables, and set at

the compile time. Even in the worst case, with the link operating

in active mode and a frequency of 2000Hz, BFD packets (60 bytes)

account to less than .01% of the 10Gbps link bandwidth.

Table 1: Effect of Tx Hold ring buffer sizing
Buffer size (KB) 1 4 8 16

Throughput (Mpps) 2.04 4.8 5.81 6.16

99% ile Latency (ms) 0.942 1.062 1.132 1.26

3.5 Chain-wide correctness
The goal of REINFORCE is to ensure external synchrony and en-

force chain-wide correctness. Here we describe how correctness

is ensured under local and remote replication, with and without

non-determinism.

Local Replicas:With local standby NFs, the state of the active-NF

is committed using a local memory copy for each batch of packets

before allowing the packets to proceed to the next NF in the chain.

This automatically ensures state consistency w.r.t. the external

view of the packets released from the NF. This provides correctness

regardless of non-determinism since a batch of packets is only

released if its state (reflecting any non-deterministic updates) has

been committed to the local replica.

Remote Replicas: For the case of replication and failover to a remote

node, we separately consider two distinct modes of operation and

how REINFORCE ensures state consistency. First, for deterministic
packet processing, packets from the primary are released from the

per-chain latch buffer only upon committing updates of packet-

processing progress to the standby’s Transmit Timestamps (TxTs

table). However, the standby’s NF chain state can be out-of-sync

and lag the primary/external state. Upon a failure, replaying the

packets from the predecessor node makes the standby NFs’ state

roll-forward and be synchronized to what was in the primary before

the failure. All the NFs process the packets to update their state.

Based on the committed TxTs table, the NF Manager on the standby

discards duplicate packets that have already been sent. Thus, the

standby node’s NFs are synchronized to the external view of the

state, which was that of the primary at the time of the failure.

If a batch of packets results in non-deterministic processing, then
the packets from primary are released only when both the NF state

checkpoint and the TxTs are committed to the remote standby for

the entire chain. This ensures that the external view is in sync with

the state at both the primary and standby nodes across the NF chain.

Note that when any NF in the chain results in non-deterministic

state updates, the state for the entire NF chain is committed before

releasing the packets. Thus standby NFs are always in sync with

the primary for released packets. Unlike FTMB, REINFORCE does

not strictly enforce the processing order on the standby NFs to be

identical to the primary in case of a failure before a commit. In

this context, the external state corresponds only to the last packets

released and not the speculatively processed packets in this batch.

This allows the standby and primary states to differ, but the external

view remains consistent when the standby becomes active. Thus,

the standby NFs can behave differently (i.e., have different resulting

state) than the primary for packets that were processed but not

yet released from the primary’s latch buffer, and still provide an

externally synchronous view of the chain-wide state.

3.6 Optimization and parameter tuning
Increasing the batch size improves throughput but also increases

latency because the packets spend a longer time in the queue if they

are processed in larger batches. To amortize per packet processing

cost, we perform state replication and packet release tasks across a

batch (32) of packets. Earlier work with DPDK has observed that a

batch size of 32 is sufficient to achieve the highest throughput [13].

We also find on our system that the sweet spot balancing through-

put and latency is with a batch size of 32. The NF state update

on the local standby is done after processing a batch of packets.

This has multiple benefits: a) reduces the number of memory copy

operations required to synchronize the state on the standby NF;

b) minimizes redundant updates by taking advantage of temporal

locality and burstiness of packets in a flow, thus benefiting from

any over-writes on the same state information. Finally, the state

transfer to a remote replica is also batched. The task of copying the

packet processing progress (the transmit timestamp table), the NF

application state transfer, and the two-phase commit for remote

replication when needed, are all batched across this batch of packets.

We also tune the size of the Latch ring buffers which hold outgoing

packets. Table 1 examines the impact on round-trip latency as the

size of the output ring buffer varies, for simple forwarding. With

a 200µs RTT and an input rate of 10 Gbps, increasing the buffer

size from 1K to 4K (8K) can double (triple) the throughput, while

incurring less than a 20% increase in tail latency. By using multiple

latch buffers, we achieve concurrency between the replication of

state and packet processing. Multiple buffers are used to hold

the outgoing packets while the timestamp and non-deterministic

state are replicated, allowing for the primary NF to continue un-

interrupted packet processing for packets from other flows (thus

ensuring correct ordering for packets of the same flow). The algo-

rithm for using multiple buffering stages is illustrated in Figure 4.

In order to limit latency, we drain the output transmit ring buffers as

Read from Tx
Port Buffer

Update TxTs Table &
move packets to Tx Latch

buffer

Is last Latch
Buffer && Latch

Buffer free?

Send TxTs update table &
Switch to Next Buffer

All Latch Buffers
used?

Wait for Transaction
completion

Yes No

Yes No

Latch
Buffers

Figure 4: Flow chart describing Multi-transaction buffers.

often as possible. Each stage of buffering helps increase the amount

of concurrency possible for NF packet processing to be done in

parallel with state updates, while buffering packets at that stage.

Only when the second ring buffer in front of the output link buffer

becomes full does the third ring buffer get populated, and so on.

These stages help minimize the latency of holding up packets while

the 2-phase commit transaction is complete. If on the other hand,

we only have a single large latch buffer, that buffer can increase

latency significantly. Note that the multiple stages of buffering are

utilized only when the RTT to the backup is very high.

3.7 Assumptions and Limitations
REINFORCE assumes failstop errors as the fault model for NFs,

hosts, and links. Despite such failures, we assume replaying pack-

ets through a local or remote replica of the NF will result in cor-

rect behavior. During replay mode, upstream NFs of an NF chain

may process duplicate packets for various reasons. We assume NFs

are able to safely handle duplicate packets without impacting cor-

rectness. Similarly, since REINFORCE depends on logical packet

timestamps, we can tolerate packet re-ordering. However, we need

to check the timestamps during the packet replay mode to avoid

re-releasing duplicate packets downstream. For supporting timers,

which is common in networks, NFs must explicitly annotate them

so that the remote standby can initiate those timer events after a

failure. Similarly, we assume NF developers are able to set a flag

to indicate which packets involved non-deterministic updates, e.g.,

at the start of a flow when a load balancing NF randomly selects a

destination.

4 IMPLEMENTATION
REINFORCE is built on OpenNetVM [44], a DPDK [1] based NFV

platform that enables to run the NFs in containers or as separate

processes.We implemented the followingmodules i) Packet logging:

to add a logical timestamp to all input packets and to log all outgoing

packets to a stable store; ii) RSync: to enforce external synchrony

and perform the two-phase commit transaction using multiple latch

buffers; and iii) Liveness Monitoring: to monitor the liveness of

locally provisioned NFs and BFD sessions across the configured

links. We dedicate 1 CPU core each for the RSync, packet logging,

and liveness monitoring functions.

The control framework coordinates failover via pause and re-

sume event notifications to active and standby NFs, and performs

failover actions for remote link failures. To account for the transmit

state timestamp of each flow and enforce 2 phase commit trans-

actions, packets leaving the last NF in a chain are stored in latch

buffers in the RSync component before being released to the DPDK

NIC ports.

4.1 Local Failover
Shadow rings: In a typical NF platform implementation, after the

NF processing, packets are handed to a transmit ring to be sent out

on the network link or forwarded to another NF in a service chain.

REINFORCE introduces the concept of a “Shadow Ring" on both

receive (Rx) and transmit (Tx) ends of the NF processing pipeline.

Shadow rings are shared ring buffers between active and standby

(replica) NFs. Rx shadow rings buffer the batch of packets that

the NF needs to process and Tx shadow rings buffer the batch of

processed packets for which the state updates have not yet been

reflected on the replica NF. There are two benefits of shadow rings.

First, they enable enforcing “output commit" for state update on

the local standby NF by allowing the transmission of a batch of

processed packets only after the NF’s state is updated on the standby.

Second, when a local failover is required due to an NF failure, the

receive side shadow ring enables the replica NF to immediately

pick up from the first unprocessed packet, while allowing us to

discard previously processed packets for whom the state-update

has already been completed.

Shared memory pool: Network functions have two kinds of ap-

plication state, i) External or the shared state across all the NF

instances, and ii) Internal state including the per-flow state and

instance specific configurations for each NF. To account for shared

state, the NF Manager allocates and maintains a memory pool per

service type. The size of this memory pool is a configurable param-

eter. In our experiments, we set this to 4 MB (our most complex

NF, based on the nDPI library, uses 2.8MB). To account for internal

NF specific state, the NF manager allocates and reserves a dedi-

cated memory pool for maintaining this state for each instantiated

NF instance. The size of this memory pool is again a configurable

parameter. In our experiments, we set this to 64 KBytes.

Tracking dirty state: To ease development, we do not require

explicit APIs for NFs to interact with their state, as is done in prior

work. Instead, we define memory pools for each NF state type

and allow NFs to perform arbitrary operations to these regions.

REINFORCE automatically detects dirty state regions by scanning

small chunks of the NF and service state memory pools to detect

changes, similar to FaRM [9]. In our evaluation we configure the

number of state chunks to 64, allowing the minimum transferable

chunk size for NF specific state to be 1KB and for the total shared

service state to be 64KB. The only API that NFs must use when

manipulating state is setting a per-packet flag that indicates if it

caused non-deterministic updates.

4.2 Remote Failover
Atomic two-phase commit transaction: We use a simple UDP

like best-effort connectionless transport to deliver updates to the

backup and use sequence numbers to identify any missing packets

(while it is desirable to have a reliable transport, we wish to avoid

the connection setup and initial handshake overheads of TCP). We

use a custom Ethernet type to differentiate state update packets

from regular NF destined packets associated with the DPDK port. If

packets are lost, we abort the transaction and resend new updates.

State transfer packet headers include the fields to indicate the type

of packet transfered (either state transfer or acknowledgement

packet), type of state (NF state, service configuration information,

or Tx Timestamp), size of the packet, base offset address, packet

sequence number, and ‘last packet’ flags. Accounting for failed
transactions: When the Tx state update commit acknowledgement

is not delivered to the primary, the NF manager may be blocked,

resulting in port buffers getting full and subsequent processing by

NFs being discarded or stalled. To avoid this, we have a transaction

timeout after which the NF manager aborts the current transaction

and continues to process the subsequent packets and send new

updates. To ensure continuity, we choose to continue processing

subsequent packets and drop the packets corresponding to the failed

transaction. End-to-end retransmission of these dropped packets is

expected to update the standby NF state appropriately.

Tx timestamp state update overhead: We opportunistically per-

form the transmit timestamp (TxTs) table state updates as often

as possible. The frequency of operation is limited by the RTT and

number of configured latch buffers on the system. Assuming a best

case RTT (between two directly connected nodes) of 100µ seconds,

performing each Tx timestamp checkpoint in the worst case needs

to transfer the entire TxTs table of 64KB (64 1KB packets). This

is an overhead of less than 5.25% on the 10Gbps link. For check-

pointing, using large latch buffers (8K), we can checkpoint at a slow

rate (roughly once every 5 RTTs) i.e., performing checkpoints once

every 500µ seconds, reducing the 10Gbps link overhead to less than

1.05% at the cost of added latency.

5 EVALUATION
Our experimental testbed used five Intel(R) Xeon(R) CPU E5-2697

v3 @ 2.60GHz servers, each with 157GB RAM, two sockets with 28

cores each, running Ubuntu SMP Linux kernel 3.19.0-39-lowlatency.

The topology for the primary, standby and predecessor nodes is as

shown in Figure 3. In addition, we have a source and sink node at

the two ends. For these experiments, nodes were connected back-

to-back with dual-port 10Gbps DPDK compatible NICs to avoid

any switch overheads. We use the DPDK-based high speed traffic

generator, Moongen [10] to generate line rate traffic consisting

of UDP and TCP packets, apache-bench [6], and wrk [4] to flood

HTTP download requests. We vary the number of flows and the

NF chain setup as needed for each experiment. We configured the

number of stages of latch buffers (i.e., multiple transaction buffers)

to 3, with each stage having 4K packet buffers.

5.1 Overhead Analysis
Our profiling indicates the cost of memory scan and updating of

the dirty state for a 64KB memory and 1KB chunks to be 55-80 CPU

ticks. The copy overhead for a 4KB page is measured to be 2315-

2590 CPU ticks. Copy operation for a batch of processed packets

drastically reduces the overhead during normal processing. Next,

we consider DPI, a compute-intensive NF, and lightweight monitor

Table 2: NFs and NF Chains used in experiments.

NF Type Characteristic
Shared Memory Non Determinism

Simple Forward (SF) Stateless - -

Basic Monitor (MON) Stateful 64 KB 5 SV, 1 ms

Vlan Tag(QoS) Stateful 64 KB 3 SV, 1 ms

Load Balancer (LB) Stateful 64 KB 1 SV, 1 ms

DPI Stateful 4 MB 2 SV, 1 ms

Chain 1 Stateful QoS, BM

Chain 2a Stateful QoS, BM, LB

Chain 2b Stateful QoS, BM, SF

Chain 3 Stateful QoS, BM, SF1, SF2

(SV) Shared variables and rate of non-deterministic updates.

 0
 2
 4
 6
 8

 10
 12
 14
 16

 64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (

M
PP

S)

Packet size in bytes

Baseline Mon
Reinforce Mon

Baseline DPI
Reinforce DPI

Figure 5: Throughput of different packet sizes

(MON) NFs, and subject them to line rate traffic for different packet

sizes. We observe from Figure 5 that REINFORCE is able to achieve

performance identical to baseline for all DPI. For MON, even the

worst case performance impact is less than 15% (12.6 Mpps with

REINFORCE compared to 14.88Mpps baseline).

Table 3: Performance impact of non-determinism
Time (ns) 1 10

3
10

5
250us 500us 10

6
10

7
10

8
10

9

Throughput (Mpps) 0.22 0.22 0.24 7.03 11.19 12.65 13.34 13.34 13.34

Max. Latency (us) 1370 1370 1370 1361 790 698 670 617 617

Impact of Non-Determinism rate: REINFORCE performs a 2-

phase commit of the chain-wide packet-processing progress and NF

states. To ensure correctness, any non-deterministic updates result

in chain-wide NF state checkpointing. The table above shows the

impact on performance for different non-determinism rates, which

is varied from 1 pkt. every nano second up to one pkt. every second.

REINFORCE is able to provide near line-rate processing for the non-

deterministic rate that is less frequent than one every 250µsec , while
more frequent non-determinism reduces the throughput, eventually

dropping to 0.22Mpps. This is due to the round-trip latency of 2-

phase commit, causing the NF processing to stall if a previous

non-deterministic batch of packets has to be processed and state

committed to the standby. In Sec. 5.4 we demonstrate that, with

multiplexing, unused resources can be utilized to serve other NFs

when one NF’s processing stalls due to non-determinism.

5.2 Operational Correctness and Performance
We demonstrate the operational correctness of REINFORCE with

both Graybox and Blackbox tests.

Graybox tests:We first validate the correctness of failover oper-

ation through instrumented template NFs that check for consis-

tency of NF state updates and packet processing. If any packets

 0
 2
 4
 6
 8

 10
 12
 14
 16

SF Mon QoS LB DPI

Th
ro

ug
hp

ut
 (

M
pp

s)

Baseline
REINFORCE

FTMB
Pico*

Figure 6: Performance impact of different FT systems on the
normal operation for different NFs.

are obtained with incorrect content (inconsistency between state

embedded in the NF and packet content), then the NF flags the

error to the NF Manager and the NF terminates. We run a script to

perform 10K forced terminations and re-activation of the active NF.

Each time the active NF fails, the failover to the backup NF happens

automatically. When the active NF is re-instantiated, the NF state

is updated and flows are routed back to the active NF. These tests

successfully validated the correctness conformance of REINFORCE

for the local failover scenario.

Blackbox tests: We also assess the application level of failover

through the following end-to-end tests.

i) DPI based protocol detection: We demonstrate REINFORCE with a

DPI NF and feed it a set of PCAP traces (MPEG, Hangout, Youtube-

upload, Snapchat, QUIC) available at NTOP [3, 8]. We observe that

the DPI NF identifies the protocols correctly both when there are

no failures and when the primary fails and REINFORCE fails over

to the standby NF.

Table 4: Effect of Failure on HTTP downloads
Baseline Resiliency

w/o failure Local Failover Remote Failover
Requests/sec 10.52 10.32 10.22

Transfer/sec (GB) 1.08 1.06 1.02

ii) HTTP downloads:We route HTTP downloads through a service

chain of 2 NFs (QoS and MON). We start repeated HTTP download

requests for a period of 60 seconds, and trigger failures at the 30

second mark. a) We induce a QoS NF instance failure to account

for local NF failover, and b) we induce, NF MGR failure on the pri-

mary node to trigger a chain-wide remote failover. We compare the

baseline operation i.e., failure-free operation with both NF instance

failure (local failover) and node failure (remote failover) cases. We

observe with REINFORCE that HTTP downloads succeed for both

the NF instance failure (local failover) and node-failure (remote

failover) cases. We also observe very little impact on the applica-

tion, resulting in just 3-4% reduction in the total number of requests

serviced per second, and a negligible reduction in throughput as

shown in Table 4.

Failover Times:Wemeasured the time for local and remote failovers

from the instant we induce a failure. For local failover: mean=

56µs and maximum= 114µs over 100 iterations. For remote failover:

mean= 3280µs and maximum= 3517µs over 10 iterations. This in-
cludes failure detection time with BFD and for the predecessor node

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 600 1200 1800

CD
F

DPI

 0 600 1200 1800

Load Balancer

 0 600 1200 1800

Chain 3

Baseline
REINFORCE

FTMB
Pico

Figure 7: RTT with different FT Systems.

to initiate the failover at the backup by starting replay of buffered

packets. We do not account for the time needed to complete the

replay and send the first new packet, as it varies based on the pro-

cessing chain and non-determinism intervals. But, we did measure

the time needed to initiate and prepare for replay at the predecessor

node (i.e., to notify the standby node, open a pcap file and start

replay). The average time taken was 60-100µs, and just below 2ms

to replay approximately 3K packets from the predecessor node to

the standby. Replay execution of the 3K packets (20Mbits) on the

standby took approximately 2ms.

5.3 Failure-free Operation
We compare REINFORCEwith FTMB [40] and Pico Replication [37]

4

for a number of different NFs in terms of i) overhead during normal

operation, reflected in the throughput, and ii) latency of packet

processing (additional state update operation), for individual NF in-

stances. Figure 6 shows throughput for normal operation, in Mpps

(with error bars showing the standard deviation in throughput).

REINFORCE performs almost as well as baseline (no resiliency)

case, achieving near line rate (∼13.5Mpps) throughput for most NFs.

REINFORCE’s remote replication outperforms Pico replication by

2 orders of magnitude. Fig. 7 shows the impact on packet latency

for two selected NFs. Local replication adds less than 5µs to the

baseline case, while remote replication adds roughly 400µs.

Table 5: Multitenancy and resiliency modes.
Mode Min Median Max

Simple Forward NF
Baseline 210 221 373

Local Replication 211 229 402

Remote Replication 540 601 789

Basic Monitor NF
Baseline 268 334 695

Local Replication 270 338 699

Remote Replication 596 623 840

(a) Latency (µs) with different re-
siliency modes.

Time (sec) NF1 (µs) NF2 (µs)
1-10 1 1000

11-20 100 750

20-30 250 500

30-40 500 500

40-50 750 250

50-60 1000 100

60-70 1000 1000

(b) Non Deterministic rates for
NF1 andNF2 at different time in-
tervals.

5.4 Multi-tenancy and Resiliency Levels
Wenow demonstrate the benefits of the NFmanagement framework

of REINFORCE in supporting multi-tenant NF execution and in

providing performance isolation for flows configured with different

resiliency levels.

4
We implement a) simplified FTMB logic with parallel releases, by storing packet

access logs (PALs) per shared variable i.e., NFs transmit all the associated PALs before

releasing packets to the NF manager; the NF manager simply transmits the packets

without blocking for output commit, and b) Pico Replication: NF state checkpointing

with output commit policy.

 0
 2
 4
 6
 8

 10
 12

 0 10 20 30 40 50 60 70
 0

 20

 40

 60

 80

 100

Th
ro

ug
hp

ut
 in

 M
pp

s

CP
U

 U
til

iz
at

io
n

%

Time (s)

NF1 Thrpt.
NF2 Thrpt.

Aggr. Thrpt.

NF1 CPU Util %
NF2 CPU Util %

Figure 8: Two isolated NFs with varying Non-Determinism
rates, running on the same CPU core.

5.4.1 Multi-tenancy. In a typical multi-tenant environment, net-

work functions from different tenants can be co-located and share

the same CPU. We expect that NFs from different tenants see dif-

ferent workloads and are consequently subject to different rates

of non-deterministic at different time intervals. When the non-

deterministic rate is high, the CPU may be idle/underutilized be-

cause of frequent stalls. But, REINFORCE takes advantage of effi-

ciently multiplexing NFs that exhibit non-determinism to improve

CPU utilization and overall system throughput. We multiplex 2

NFs, NF1 and NF2, from different tenants on the same core. They

exhibit different non-deterministic rates at different time intervals

as shown in Table 5b. Figure 8 shows the ability of REINFORCE to

efficiently multiplex these 2 NFs, resulting in the improvement in

both the CPU utilization and aggregate throughput.

5.4.2 Differing resiliency levels. We demonstrate the benefit of

REINFORCE’s ability to support different flows configured with dif-

ferent resiliency levels. REINFORCE provides the desired resiliency

while isolating the flows from each other. We have two Monitor

NF instances, configured as: (a) one NF instance with only local

resiliency (backup on the same node) for flow-1; and (b) a second

NF instance with node-level resiliency (remote standby) for flow-2.

We also perform a similar experiment with the Simple Forward NF

as well. The latencies for the two flows differ, as shown in Table 5a.

We observe the impact on latency is minimal for the flows config-

ured with only local resiliency (less than 30ms in the worst case).

But, flows configured with remote resiliency (local + remote) incur

nearly 2x higher latency for both the Simple Forward and Basic

Monitor cases. This shows the ability of REINFORCE in providing

different levels of resiliency while isolating one flow from another

– an essential and desirable characteristic for multi-tenancy.

5.5 Impact of Chain Length
We consider experiments with multiple chains having different

lengths as described in Table 2. We compare four cases: baseline

(no resiliency), REINFORCE, FTMB, and Pico Replication
5
. Figure 9

shows that performance of REINFORCE remains consistent with

the baseline for varying chain lengths, unlike FTMB and Pico. In

fact, with increased chain lengths, the overheads of REINFORCE

are amortized allowing the throughput to be closer to the baseline.

With FTMB and Pico, to ensure correctness, the output commit

5
For both FTMB and Pico Replication, we implement the state replication only at

the end of the chain, rather than at every NF. This serves as a simplified, optimized

approach, but does not ensure correctness.

 0
 2
 4
 6
 8

 10
 12
 14

Chain 1 Chain 2a Chain 2b Chain 3

Th
ro

ug
hp

ut
 (

M
pp

s) Baseline
REINFORCE

FTMB
Pico*

Figure 9: Comparison of chain-wide processing perfor-
mance for different NF chains.

must be performed individually for each NF in the chain. In fact, the

throughput we show for FTMB and Pico is likely to be optimistically

high compared to a full implementation.

6 RELATEDWORK
NF state migration: Split/Merge [38] defines state access APIs to

read and update the internal state of virtualized NFs being moved

across hosts. It relies on the ability to identify per-flow state to pro-

vide consistent migration. Stratos [14] provides an orchestration

layer for NFs by using an SDN controller to migrate the instances

and redistribute the traffic to less congested nodes. Likewise, we

take advantage of SDN controller to set up the forwarding rules

but rely on NF Managers to efficiently migrate the NF instances.

OpenNF [15] presents a control plane architecture to have loss-free

transfer of NF state. But, because of a controller-based orchestration

and event buffering mechanism, it has high per packet latency for

migration. In contrast, REINFORCE relies on the NF Manager (Re-

mote Sync) to perform the NF state migration across the designated

active and standby NF nodes while allowing NFs to simultane-

ously process packets. Unlike [38], REINFORCE does not require

the NFs to depend on specific state update APIs, but only requires

the NFs to annotate the state updates sufficiently to distinguish be-

tween deterministic and non-deterministic changes. StateAlyzr [25]

complements our work by enabling the NF developers to program-

matically analyze and to identify just the right amount (minimal)

of NF state, and correctly annotate the NF state that needs to be

migrated to ensure consistent state replication. S6 [43] provides

a framework for elastic scaling of NFs. It implements NF state as

distributed shared state objects, and supports object replication to

facilitate NF state sharing across multiple NF instances.

Fault tolerance and high availability: Pico Replication [37] is

an application level NF state checkpointing based high availability

framework built on top of Split/Merge. It provides fine-grained

flow level state replication and employs flow group-based NF state

transfers. To enforce correctness, it buffers all output packets during

NF state checkpointing, thus delaying outputs even during failure-

free operation.

FTMB [40] is a replay based framework that logs all input pack-

ets and the per packet access log of all the components (i.e., the
shared variables in NF that account for non-determinism) that are

necessary to restore the state on the replica during replay. In addi-

tion, to amortize the cost of input logging, it also employs periodic

check-pointing of NFs. Thus, FTMB guarantees correctness of op-

eration during replay mode by ensuring strict ordering of packet

processing (guided by the packet access logs) at the replay node. In

essence, FTMB’s notion of correctness emulates strict idempotent

per packet behavior across the active and replica nodes. This comes

at the cost of maintaining multiple per packet access logs, which

becomes a potential bottleneck for NFs with 5+ shared variables,

for packet rates of 1.25Mpps (ref. §5 of [40]), resulting in more than

∼30% overhead traffic. In addition, due to periodic VM checkpoint-

ing, the tail latencies drastically increase from less than 100µs, at the
50th%-ile, to nearly 810 µs, at 95th%-ile and 18ms at 99th%-ile. Also,

both of these works do not account for chains of network functions.

REINFORCE fills this gap by presenting an efficient chain level

replication mechanism that does not excessively impact (introduce

latency) failure-free operation, nor does it induce limits on pro-

cessing rates to enforce correctness at the replica state. Plover [42]

presents a virtualized state machine replication system to address

general VM fault tolerance. By enforcing the same total order of

inputs for a VM replicated across hosts, it can keep most memory

pages updated and only transfer the few divergent pages between

primary and secondary, which effectively alleviates checkpoint-

ing overhead while maintaining external consistency. Alternative
architectures: StatelessNF [20] and StreamNF [24] are alternative

approaches of externalizing the state of the NFs to in-memory

databases like RAMCloud [31]. While this may be feasible for some

NFs, the database can become a bottleneck. Also, substantial refac-

toring is required. REINFORCE focuses on traditional middlebox

architectures and limits changes needed in NF development.

7 CONCLUSION
REINFORCE is the first to address chain-wide network function

resiliency, supporting fast detection and recovery of software as

well as server and link failures. REINFORCE can detect NF failure

and failover to a local standby within 150µs. More importantly, it

provides chain-wide failover to a remote node within 5ms. In addi-

tion, REINFORCE results in minimal overhead for normal operation

and achieves 2X better performance than the state-of-the-art. We

distinguish the minimum state information needed to achieve effi-

cient and consistent remote replication. The key is REINFORCE’s

separation of deterministic and non-deterministic NF processing,

and only incurring the overhead of checkpointing and a 2-phase

commit of state on the standby for non-deterministic NF processing.

REINFORCE automatically tracks and replicates state to standby

NFs while enforcing correctness. The amount of state replicated

is minimized by using ‘lazy’ replication of NF application state

across hosts, and packet replay is used to speed up the recovery

of deterministic NF processing. Even for reasonably frequent non-

deterministic packet processing, REINFORCE’s performance is far

superior to the other alternatives.

Acknowledgement: We thank our shepherd, Aurojit Panda, and

the anonymous reviewers for their thoughtful feedback. This work

was supported by EU FP7Marie Curie Actions CleanSky ITN project

Grant No. 607584, and US NSF grants CRI-1823270, CRI-1823236,

CNS-1422362, CNS-1522546 the ARO DURIP grant W911NF-15-

1-0508, and grants from Hewlett Packard Enterprise Co. and Fu-

turewei Technologies, Inc.

REFERENCES
[1] Data plane development kit. http://dpdk.org/, 2014. [online].

[2] Criu: Checkpoint restore in userspace. http://criu.org/, 2017. [online].

[3] ndpi test pcap traces. https://github.com/ntop/nDPI/tree/dev/tests/pcap, 2018.

[online].

[4] wrk: a http benchmarking tool. https://github.com/wg/wrk, 2018. [online].

[5] Alpernas, K., Manevich, R., Panda, A., Sagiv, M., Shenker, S., Shoham, S.,

and Velner, Y. Abstract interpretation of stateful networks. In International
Static Analysis Symposium (2018), Springer, pp. 86–106.

[6] Bench, A. ab-apache http server benchmarking tool.

[7] Cachin, C., Schubert, S., and Vukolić, M. Non-determinism in byzantine

fault-tolerant replication. arXiv preprint arXiv:1603.07351 (2016).
[8] Deri, L., Martinelli, M., Bujlow, T., and Cardigliano, A. nDPI: Open-source

high-speed deep packet inspection. In 2014 InternationalWireless Communications
and Mobile Computing Conference (IWCMC) (Aug. 2014), pp. 617–622.

[9] Dragojević, A., Narayanan, D., Castro, M., and Hodson, O. Farm: Fast

remote memory. In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14) (Seattle, WA, 2014), USENIX Association, pp. 401–414.

[10] Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., and Carle, G.

Moongen: a scriptable high-speed packet generator. In Proceedings of the 2015
ACM Conference on Internet Measurement Conference (2015), ACM, pp. 275–287.

[11] ETSI-GS-NFV-002. Network Functions Virtualization (NFV): Architectural

Framework. http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/

gs_nfv002v010101p.pdf, 2013. [online].

[12] ETSI-GS-NFV-REL-001. Network Functions Virtualization (NFV): Resiliency

Requirements. http://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/001/01.01.

01_60/gs_NFV-REL001v010101p.pdf, 2015. [online].

[13] Gallenmüller, S., Emmerich, P., Wohlfart, F., Raumer, D., and Carle, G.

Comparison of frameworks for high-performance packet io. In Proceedings of the
Eleventh ACM/IEEE Symposium on Architectures for networking and communica-
tions systems (2015), IEEE Computer Society, pp. 29–38.

[14] Gember, A., Krishnamurthy, A., John, S. S., Grandl, R., Gao, X., Anand, A.,

Benson, T., Akella, A., and Sekar, V. Stratos: A network-aware orchestration

layer for middleboxes in the cloud. CoRR abs/1305.0209 (2013).
[15] Gember-Jacobson, A., Viswanathan, R., Prakash, C., Grandl, R., Khalid,

J., Das, S., and Akella, A. Opennf: Enabling innovation in network function

control. SIGCOMM Comput. Commun. Rev. 44, 4 (Aug. 2014), 163–174.
[16] Gill, P., Jain, N., and Nagappan, N. Understanding network failures in data

centers: Measurement, analysis, and implications. SIGCOMM Comput. Commun.
Rev. 41, 4 (Aug. 2011), 350–361.

[17] Gunawi, H. S., Hao, M., Leesatapornwongsa, T., Patana-anake, T., Do, T.,

Adityatama, J., Eliazar, K. J., Laksono, A., Lukman, J. F., Martin, V., and

Satria, A. D. What bugs live in the cloud? a study of 3000+ issues in cloud

systems. In Proceedings of the ACM Symposium on Cloud Computing (New York,

NY, USA, 2014), SOCC ’14, ACM, pp. 7:1–7:14.

[18] Gunawi, H. S., Hao, M., Suminto, R. O., Laksono, A., Satria, A. D., Adityatama,

J., and Eliazar, K. J. Why does the cloud stop computing?: Lessons from

hundreds of service outages. In Proceedings of the Seventh ACM Symposium on
Cloud Computing (New York, NY, USA, 2016), SoCC ’16, ACM, pp. 1–16.

[19] Jackson, E. J., Walls, M., Panda, A., Pettit, J., Pfaff, B., Rajahalme, J., Kopo-

nen, T., and Shenker, S. Softflow: A middlebox architecture for open vswitch.

In USENIX Annual Technical Conference (2016), pp. 15–28.
[20] Kablan, M., Alsudais, A., Keller, E., and Le, F. Stateless network functions:

Breaking the tight coupling of state and processing. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17) (Boston, MA, 2017),

USENIX Association, pp. 97–112.

[21] Katz, D., and Ward, D. Bidirectional Forwarding Detection (BFD). RFC 5880,

June 2010.

[22] Katz, D., and Ward, D. Bidirectional Forwarding Detection (BFD) for IPv4 and

IPv6 (Single Hop). RFC 5881, June 2010.

[23] Katz, D., and Ward, D. Generic Application of Bidirectional Forwarding Detec-

tion (BFD). RFC 5882, June 2010.

[24] Khalid, J., and Akella, A. Streamnf: Performance and correctness for stateful

chained nfs. CoRR abs/1612.01497 (2016).

[25] Khalid, J., Gember-Jacobson, A., Michael, R., Abhashkumar, A., and Akella,

A. Paving the way for NFV: Simplifying middlebox modifications using statealyzr.

In 13th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 16) (Santa Clara, CA, 2016), USENIX Association, pp. 239–253.

[26] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F. The click

modular router. ACM Trans. Comput. Syst. 18, 3 (Aug. 2000), 263–297.
[27] Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B., Gazagnaire,

T., Smith, S., Hand, S., and Crowcroft, J. Unikernels: Library operating systems

for the cloud. SIGPLAN Not. 48, 4 (Mar. 2013), 461–472.

[28] Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M., Bifulco, R., and

Huici, F. Clickos and the art of network function virtualization. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and Implementation
(Berkeley, CA, USA, 2014), NSDI’14, USENIX Association, pp. 459–473.

[29] Nightingale, E. B., Veeraraghavan, K., Chen, P. M., and Flinn, J. Rethink

the sync. In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation (Berkeley, CA, USA, 2006), OSDI ’06, USENIX Association,

pp. 1–14.

[30] Nightingale, E. B., Veeraraghavan, K., Chen, P. M., and Flinn, J. Rethink

the sync. ACM Trans. Comput. Syst. 26, 3 (Sept. 2008), 6:1–6:26.
[31] Ongaro, D., Rumble, S. M., Stutsman, R., Ousterhout, J., and Rosenblum,

M. Fast crash recovery in ramcloud. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (New York, NY, USA, 2011), SOSP

’11, ACM, pp. 29–41.

[32] Palkar, S., Lan, C., Han, S., Jang, K., Panda, A., Ratnasamy, S., Rizzo, L., and

Shenker, S. E2: A framework for nfv applications. In Proceedings of the 25th
Symposium on Operating Systems Principles (New York, NY, USA, 2015), SOSP

’15, ACM, pp. 121–136.

[33] Panda, A., Lahav, O., Argyraki, K., Sagiv, M., and Shenker, S. Verifying

isolation properties in the presence of middleboxes. arXiv preprint arXiv:1409.7687
(2014).

[34] Pignataro, C., Ward, D., Akiya, N., Bhatia, M., and Networks, J. Seamless

Bidirectional Forwarding Detection (S-BFD). RFC 7880, July 2016.

[35] Potharaju, R., and Jain, N. Demystifying the dark side of the middle: A field

study of middlebox failures in datacenters. In Proceedings of the 2013 Conference
on Internet Measurement Conference (New York, NY, USA, 2013), IMC ’13, ACM,

pp. 9–22.

[36] Quinn, P., and Nadeau, T. Problem Statement for Service Function Chaining.

RFC 7498, Apr. 2015.

[37] Rajagopalan, S., Williams, D., and Jamjoom, H. Pico replication: A high avail-

ability framework for middleboxes. In Proceedings of the 4th Annual Symposium
on Cloud Computing (New York, NY, USA, 2013), SOCC ’13, ACM, pp. 1:1–1:15.

[38] Rajagopalan, S., Williams, D., Jamjoom, H., and Warfield, A. Split/merge:

System support for elastic execution in virtual middleboxes. In Presented as part
of the 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13) (Lombard, IL, 2013), USENIX, pp. 227–240.

[39] Sahoo, S. K., Criswell, J., and Adve, V. An empirical study of reported bugs in

server software with implications for automated bug diagnosis. In Proceedings of
the 32Nd ACM/IEEE International Conference on Software Engineering - Volume 1
(New York, NY, USA, 2010), ICSE ’10, ACM, pp. 485–494.

[40] Sherry, J., Gao, P. X., Basu, S., Panda, A., Krishnamurthy, A., Maciocco, C.,

Manesh, M., Martins, J. a., Ratnasamy, S., Rizzo, L., and Shenker, S. Rollback-

recovery for middleboxes. SIGCOMM Comput. Commun. Rev. 45, 4 (Aug. 2015),
227–240.

[41] Velner, Y., Alpernas, K., Panda, A., Rabinovich, A., Sagiv, M., Shenker, S.,

and Shoham, S. Some complexity results for stateful network verification. In

International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (2016), Springer, pp. 811–830.

[42] Wang, C., Chen, X., Jia, W., Li, B., Qiu, H., Zhao, S., and Cui, H. PLOVER: Fast,

multi-core scalable virtual machine fault-tolerance. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18) (Renton, WA, 2018),

USENIX Association, pp. 483–489.

[43] Woo, S., Sherry, J., Han, S., Moon, S., Ratnasamy, S., and Shenker, S. Elastic

scaling of stateful network functions. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18) (Renton, WA, 2018), USENIX Asso-

ciation, pp. 299–312.

[44] Zhang, W., Liu, G., Zhang, W., Shah, N., Lopreiato, P., Todeschi, G., Ramakr-

ishnan, K., andWood, T. Opennetvm: A platform for high performance network

service chains. In Proceedings of the 2016 Workshop on Hot Topics in Middleboxes
and Network Function Virtualization (New York, NY, USA, 2016), HotMIddlebox

’16, ACM, pp. 26–31.

http://dpdk.org/
http://criu.org/
https://github.com/ntop/nDPI/tree/dev/tests/pcap
https://github.com/wg/wrk
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/001/01.01.01_60/gs_NFV-REL001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/001/01.01.01_60/gs_NFV-REL001v010101p.pdf

	Abstract
	1 Introduction
	2 Design Considerations
	2.1 Deployment and State Management
	2.2 Failure Model and Detection Schemes
	2.3 Recovery: Replay vs. No-replay
	2.4 Non-Determinism

	3 Architecture and Design
	3.1 REINFORCE Components
	3.2 Local Resiliency
	3.3 Remote Resiliency
	3.4 Failure Detection
	3.5 Chain-wide correctness
	3.6 Optimization and parameter tuning
	3.7 Assumptions and Limitations

	4 Implementation
	4.1 Local Failover
	4.2 Remote Failover

	5 Evaluation
	5.1 Overhead Analysis
	5.2 Operational Correctness and Performance
	5.3 Failure-free Operation
	5.4 Multi-tenancy and Resiliency Levels
	5.5 Impact of Chain Length

	6 Related Work
	7 Conclusion
	References

