Microboxes: High Performance NFV with Customizable,
Asynchronous TCP Stacks and Dynamic Subscriptions

Guyue Liu*, Yuxin Ren*, Mykola Yurchenko®,
K K. Ramakrishnan?, Timothy Wood*
*George Washington University, "University of California, Riverside

ABSTRACT

Existing network service chaining frameworks are based on
a “packet-centric” model where each NF in a chain is given
every packet for processing. This approach becomes both
inefficient and inconvenient for more complex network func-
tions that operate at higher levels of the protocol stack. We
propose Microboxes, a novel service chaining abstraction
designed to support transport- and application-layer middle-
boxes, or even end-system like services. Simply including a
TCP stack in an NFV platform is insufficient because there is
awide spectrum of middlebox types—from NFs requiring only
simple TCP bytestream reconstruction to full endpoint termi-
nation. By exposing a publish/subscribe-based API for NFs
to access packets or protocol events as needed, Microboxes
eliminates redundant processing across a chain and enables a
modular design. Our implementation on a DPDK-based NFV
framework can double throughput by consolidating stack op-
erations and provide a 51% throughput gain by customizing
TCP processing to the appropriate level.

CCS CONCEPTS

« Networks — Middle boxes / network appliances;

KEYWORDS
Middleboxes, NFV, Networking Stack, Service Chain

ACM Reference Format:

G. Liu, Y. Ren, M. Yurchenko, K.K. Ramakrishnan, T. Wood. 2018.
Microboxes: High Performance NFV with Customizable, Asynchro-
nous TCP Stacks and Dynamic Subscriptions. In Proceedings of ACM
SIGCOMM 2018 Conference (SIGCOMM °18). ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3230543.3230563

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGCOMM 18, August 20-25, 2018, Budapest, Hungary

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5567-4/18/08...$15.00
https://doi.org/10.1145/3230543.3230563

3 mos-8KB —é—

N fwd-8KB - © -

2 mos-64B —+—

8 fwd-64B — & - o

© . Y -

- -

=) N g mE <

2 —-0--¢€

g BT Vo, s W SRR SR

a 1 1 1 1 1 1 I
2 3 4 5 6 7 8

#NFs
Figure 1: Repeated TCP stack processing in a chain of

mOS NFs can cause unnecessarily high delay.

1 INTRODUCTION

Today’s enterprise and wide-area networks are filled with
middleboxes [27] providing a wide range of functionality
from simple firewalls to complex Evolved Packet Core (EPC)
functions in cellular networks. Network Function Virtual-
ization (NFV) platforms provide high performance packet
processing by leveraging kernel bypass I/O libraries such
as DPDK [1] and netmap [25]. However, these systems are
packet-centric: they focus on providing efficient movement
of packets through a chain of network functions that oper-
ate on each packet as it arrives. While this model can make
sense for simple layer-2/3 processing, it becomes inefficient
and inconvenient when building more complex functions
operating at higher levels of the protocol stack.

Network functions that operate at the transport layer need
to perform additional processing such as TCP bytestream
reconstruction. This is a relatively heavyweight function
since it involves copying packet data into a buffer, an action
that is avoided in many layer-2/3 middleboxes that rely on
"zero-copy" to achieve high throughput. High performance,
user-space TCP stacks [12, 13] can be used by NFs to simplify
this operation, but these libraries must be used individually
by each NF, resulting in redundant computation if a chain of
functions each perform TCP processing.

To illustrate the high cost of redundant TCP processing,
Figure 1 shows the processing latency for a chain of NFs that
perform TCP bytestream reconstruction using mOS [12] or
simply forward individual packets at layer 2 (fwd in figure);
to maximize performance, each NF runs on its own core. As
the chain length increases, the latency for the NFs performing
TCP processing increases substantially compared to that for


https://doi.org/10.1145/3230543.3230563
https://doi.org/10.1145/3230543.3230563

SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

layer-2 NFs. Ideally, this added latency could be avoided by
performing TCP processing only once, and then exposing
the resulting stream to the sequence of NFs.

While consolidating the stack processing within a chain
eliminates redundant work, supporting such an architecture
in an NFV platform can be difficult since each chain may
require different levels of TCP processing. Some flows may
require full bytestream reconstruction, while others may only
need simpler detection of TCP state transitions. Still other
NFs may require complete TCP endpoint termination, for
example to host a caching proxy. Supporting this spectrum
requires a customizable TCP processing engine that only
performs the necessary work for each flow of packets.

We have designed the Microboxes framework in order to
provide the appropriate level of protocol processing with-
out incurring redundant work for chains. Microboxes allow
complex NFs to be broken into their composite parts, and for
chains of functions to be flexibly and efficiently connected
together. The Microboxes framework provides modular pro-
tocol processing engines that can be tuned to support only
the features needed for a given flow. Providing this appropri-
ate protocol functionality for individual flows requires us to
go beyond just a packet-centric view of middlebox service
chaining. Microboxes produce and consume events that may
correspond to individual packet arrivals, protocol events, or
application-level actions. Our platform makes the following
contributions:

o A publish/subscribe architecture that provides con-
venient, higher level interfaces based on the flow of
events rather than the flow of packets.

e A consolidated protocol stack that eliminates redun-
dant computation in chains of NFs.

o A customizable stack to support a spectrum of middle-
box types ranging from lightweight TCP state moni-
toring to proxies with full TCP termination.

e Techniques for asynchronous parallel processing across
NFs and the stack to improve scalability while meeting
consistency requirements.

We have implemented Microboxes using a high perfor-
mance, DPDK-based NFV framework. Our evaluation shows
that the Microboxes consolidated TCP stack doubles through-
put and lowers latency by 20% compared to mOS when run-
ning a chain of 6 TCP-based NFs. Compared to the industry-
standard HAProxy, a web proxy built on our platform pro-
vides between 30-51% throughput improvement by customiz-
ing stack processing e.g., using our TCP Splicer Stack that
allows zero-copy, lightweight URL-based redirection, or us-
ing a full TCP Proxy Stack that supports arbitrary data trans-
formations at higher cost. This allows NFs to choose the
appropriate level of protocol processing for each flow’s per-
formance and functional requirements.

G. Liu et al.

‘ Header Payload Example NF
Layer-2/3 RW - Firewall
TCP Monitor R R IDS
TCP Splicer RW R L7 Load Balancer
TCP Split Proxy | RW RW Proxy
Table 1: Different types of NFs require different levels
of TCP processing with varying costs

=
o

5 L2 Fwd mmm
S g | TCP Monitor =<
9 TCP no stream 71
& 6 TCPSplicer

Q.

£ 4

>

e 2

e

F o

64B 8KB
Figure 2: Performance depends on the type of stack
processing needed and the incoming workload.

2 MIDDLEBOX STACK DIVERSITY

It is important to go beyond simply creating a “one size fits
all” TCP stack to be used for all NFs—depending on the na-
ture of the NF it may only require certain protocol events
or may need unique types of processing. Flows with differ-
ent requirements are likely to be consolidated on to a single
NFV host. Table 1 enumerates a spectrum of common mid-
dlebox types with distinct protocol processing requirements.
Layer-2/3 NFs require no TCP state, but may require the
ability to read and write packet headers, with no inspection
of payload data. TCP Monitor middleboxes, such as an In-
trusion Detection System (IDS), require TCP reconstruction
and primarily monitor flow state; they may drop connec-
tions but do not need to modify individual packets. Next,
TCP Splicer middleboxes must both read and write TCP
header data in order to redirect traffic, for example a Layer-7
Load Balancer might perform a TCP handshake with a client
and observe the content in an HTTP GET request before
selecting a backend and handing off the connection to that
server, without any modifications to the bytestream. Finally,
middleboxes that perform TCP Split Proxy need complete
control over the bytestream. For example, a split TCP-proxy
might compress a server’s replies before sending them over
a second connection to the client.

The amount of work that must be performed for proto-
col processing in each of these cases can vary significantly.
To demonstrate this, we evaluate the throughput of several
middleboxes processing traffic from a web client requesting
64B or 8KB files from a server (Figure 2). The NFs are de-
signed to perform minimal extra work beyond the requisite
protocol processing. The Layer 2 Fwd NF simply forwards
packets out the NIC, so it gets the highest throughput, note
that the web server and client become the bottleneck for



Microboxes: High Performance NFV with Customizable,
Asynchronous TCP Stacks and Dynamic Subscriptions

64B requests. The TCP Monitor NF uses the mOS TCP mid-
dlebox library [12] to track connection state and perform
flow reconstruction, while the "TCP no stream" NF is the
same, but does not reconstruct the bytestream. Performing
TCP processing substantially reduces throughput compared
to simple forwarding, although the overhead is not as high
if the NF does not need to track the bytestream. The TCP
Splicer NF uses DPDK library and acts as a Splicer [9, 18],
initially responding to the client, and then replaying the TCP
handshake with a server. This has high overhead when re-
quests are small (since extra work needs to be done to setup
each new connection), but performs fairly well when the
request size is large since it simply relays data packets after
the connection is set up. These results show that an NFV
platform running a variety of NF services is likely to require
different types of stack processing for different flows.

This motivates our design of Microboxes to support flexible
protocol stacks that can be customized on a per-flow basis to
perform only the type of processing required by an NF.

3 MICROBOXES DESIGN

Monolithic NF architectures, illustrated in Figure 3(a), group
functions together into a single address space, and are used in
platforms such as BESS [11] and mOS [12]. This provides low
overhead chaining since each NF is just a function call, but it
requires NF implementations to be tightly coupled. Instead,
Microboxes focuses on NFs built using a pipeline model, i.e.,
functions run as isolated processes or containers and packet
data flows through a chain of service functions to achieve
an overall application goal. The pipelined approach provides
deployment benefits since NFs from different vendors can be
easily grouped together to build complex behavior and can be
elastically scaled out by adding more cores. However, exist-
ing pipeline-based NFV platforms such as OpenNetVM [29]
or ClickOS [19] focus on moving packets, not higher level
protocol stack events, as shown in Figure 3(b). Microboxes
eschews the packet-centric design of prior platforms in order
to extract common protocol processing functionality into
a pStack, and expose a flexible pEvent interface between
NFs to eliminate redundant work, while maintaining the
deployment flexibility of the pipeline model.

3.1 pEvents

The Microboxes event management system propagates events
(rather than packets) through NFs to achieve the desired
protocol- and application-layer processing. The pEvent mes-
saging system is based around subscriber lists, which indicate
the other NFs interested in events produced by a protocol
stack or NF. Subscriptions can be filtered on a per-flow basis,
and are managed by the Microboxes Controller.

SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

Base Event Types: An event type defines a message for-
mat used to facilitate communication and determine how
NFs and stacks can be interconnected. Events must follow
well-defined data types to ensure that a subscriber will be
able to interpret the message; we assume Microboxes de-
velopers share event IDs and data structure definitions for
events they wish to propagate to other NFs. Figure 3(d) shows
the hierarchy of event types defined by the base layer, TCP
stack, and our sample NFs. Other NFs can extend these to
create more complex messages. An EVENT is the simplest
type on which others are based and is defined by fields in-
dicating the event type and the publishing NF’s ID. The
EVENT/PKT type extends this data structure to include
information about a specific packet and the flow state re-
lated to it. NFs that do not require every packet, but only
need to be notified of state changes such as the start or
end of a flow can subscribe to EVENT/FLOW. For brevity,
we generally omit the EVENT/ prefix. The PKT and FLOW
based events provide flexibility, e.g., an NF might require
knowledge of every packet related to a connection closing
(PKT/TCP/FIN), or it might only care about the overall
state change (FLOW/TCP/TERMINATE).

Event Hierarchy: An event type defines a messaging for-
mat similar to a communication protocol. A type can then be
“extended” to create a new type that begins with all of the par-
ent fields, and possibly adds extra ones, similar to layering an
additional protocol header. For example, the PKT/TCP event
indicates that a packet has been processed by a TCP stack,
and adds fields for the TCP stack state to its parent event’s
data format. However, unlike layering protocol headers, child
events are not required to add additional data fields to the
parent type. For example, PKT/TCP is further extended to
represent important TCP events, such as PKT/TCP/SYN,

PKT/TCP/FIN,and PKT/TCP/RETRANSMISSION. Inthese

cases the child events are used to provide a way for NFs to
subscribe to the subset of the parent events that they care
about. Thus the event hierarchy serves two purposes: it pro-
vides abstraction over data structures to allow more flexible
type checking and it offers more flexible ways for NFs to
filter the types of events they want to receive.

Event Subscription: Network functions and protocol stacks
publish and subscribe to events to exchange information and
trigger processing. When an NF starts, it can create a sub-
scription by specifying an event type and a callback function
handler. The hierarchy of types standardizes subscriptions so
the Controller, described below, can perform type checking
and determine how the new subscription can be connected
to a publishing NF or stack component. The type relation-
ship X/Y defines a strict hierarchy where X/Y is a child of
X and includes all of its data fields and possibly more. Thus
an NF that subscribes to messages of type X can also handle



SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

G. Liu et al.

l func IDS l l func DPI l lfunc Cachel | |
FLOW_DEST
TCP Stack HTTP Splicer Trans
L2/3 Stack LB G uStack coder
FL P!
NFV IO (DPDK)

-~[FLOW_REQ

[ PKT | NN
; .. *|FLOW_DEST
‘A

(a) Monolithic Architecture Cache

¥ v
[ pxrrce | [Fowstop | [ DATA ROY |

DPI Cache
IDS TCP Stack TCP Stack
12/3 Stack |*"»{ 1273 Stack | -~"—»| L2/3 Stack L2/3 pStack

NFV IO (DPDK)

(b) Pipelined Architecture

x DATA_RDY
’ Split Proxy
uStack
End Pt uStack]

PKT/TCP

TCP Monitor pStack

NFV IO (DPDK)

(¢) Microboxes Architecture

P » “a A
7 FLOW/TCP/
g [PrT/TCP/SYN| [ PKT/TCP/RIN | [ FESINICE
II PKT/TCP/DPI
Key: l Base Eventsl l TCP Events l NF Events

(d) Microboxes Event Types

Figure 3: (a) Monolithic architectures combine NFs as function calls in a single process, but this hurts deploy-
ment. (b) Pipelined NFs deployed as containers are easier to manage, but prone to redundant computation. (c-d)
Microboxes customizes protocol processing in uStack modules and facilitates communication with a hierarchy of

pEvent types.

messages of type X/Y, but not necessarily the opposite. Us-
ing this hierarchy provides a well-defined interface for type
checking and filtering, compared to previous NFV packet
pipeline frameworks where data moving between NFs has
no defined format. The typing of ports are similar to Click
platform [14], instead of having only pull and push ports, we
extend it into a hierarchy types.

Other Approaches: Our design is inspired by prior event-
based systems such as mOS [12] and Bro [22], but there are
three main differences. While systems such as mOS allow
user defined events, they perform all event processing in a
single monolithic process. In contrast, we separate stacks
and NFs, and allow events to traverse process boundaries via
well-defined interfaces. This provides better performance
isolation compared to running all threads in a single process
and makes it possible to assign different resources and se-
curity levels for stacks and NFs. Our approach also allows
NFs to be packaged as container-based appliances, which
increases ease of deployment compared to tracking all de-
pendencies of shared libraries in a multi-threaded process.
Second, Microboxes’s structured event types facilitate NF
composition with inheritance allowing NFs to extend the
base types while maintaining interoperability. Correspond-
ingly, our event types focus on the data structures of message
formats, as opposed to the definition of signaling rules that
trigger an event (e.g., the mOS UDE filter functions). Finally,
Microboxes’s controller can use the publish/subscribe types
in an NF definition to validate which NFs can be connected to-
gether, which is valuable when deploying loosely connected
NFs developed by different organizations. In comparison,
prior schemes require the linking to be done by individual
NF developers.

3.2 uStacks

The simplest pEvents in the Microboxes Architecture are
published when the packet first receives Layer 2/3 process-
ing. However, NF development can be simplified by allowing

subscription to more complex events that are the result of
higher level protocol stack processing, such as reconstructing
new data in a TCP bytestream or detecting the completion of
the 3-way handshake. Microboxes extracts protocol process-
ing from the NFs and implements it as modular uStacks that
can be broken into different layers depending on NF needs.

Figure 3(c) shows our five yStacks and how they can be
used by different NFs to meet their processing needs. In this
example, only the Cache function requires full TCP endpoint
termination, while the IDS needs no TCP processing at all.
Despite their modularity, the pStacks all must build upon
each other to prevent redundant work. We describe the full
range of stack modules in Section 5.

Our pStack implementations build on mOS [12], which
provides an efficient networking stack for monolithic mid-
dleboxes and its twin stack design enables tracking L4 states
of both end-points. This allows NFs to subscribe to events
related to the client or server side of a TCP connection. How-
ever, simply using mOS as a pStack is not sufficient due to
consistency issues and performance challenges, which we
will describe in Section 4.

The TCP pStacks each provide additional functionality, but
modify data in a shared flow table. Events must be tied back
to the original packet that produced them so that the stack
knows when application layer processing has completed.
Once all NFs finish with events, a message is returned to the
associated pStack so that it can finalize processing. This is
done for each pStack layer, eventually returning to the L2/L3
stack, which will propagate the packet out the NIC.

3.3 Microboxes Controller

The Microboxes Controller has two main roles. First, it main-
tains a registry of NFs and the event types that are being
published or subscribed. Second, it acts similar to an SDN
controller, containing the high level logic specifying how
publishers and subscribers are interconnected. This architec-
ture exploits similar ideas that are used in Microservices [10]



Microboxes: High Performance NFV with Customizable,
Asynchronous TCP Stacks and Dynamic Subscriptions

and SDNs—NF functionality is broken down into small, easily
replicated components that interact with simple event-based
messaging APIs, and a centralized controller connects the
components together to achieve the overall platform goals.

Each network function or uStack module registers a set of
input ports (subscriptions) and output ports (publications)
with the controller, along with the message type for each
port. The Microboxes Controller is responsible for linking the
input/output ports of NFs and performing type checking to
ensure NFs will be able to interpret incoming event messages.
This is achieved using the hierarchy of yEvent Types.

We assume that each event type is defined with a unique
identifier and data structure known to other NF developers.
For exposition we use names such as PKT/TCP/SYN, but
in practice these are converted to unique identifier bits for
each level in the hierarchy. NFs and pStacks announce what
events they will publish at init time by requesting output
ports from controller using mb_pub API. Meanwhile, they
announce subscribed types to controller using mb_sub API.
For every NF subscription, the Controller maps it to one
or more publication ports. The Controller performs type
checking to ensure the event types are the same, or the
publication is a descendant of the subscribed type. NFs also
implicitly publish all event types to which they subscribe;
this can be used by the Controller to form chains of NFs. If an
NF performs modifications to packets or stack state as part
of its event processing, it specifies this with its publication,
which allows the Controller to determine which NFs can run
in parallel or in sequence, as described later.

3.4 Microboxes Applications

A Microboxes Application is composed of one or more
uStack modules and multiple NFs. Several Applications can
co-exist, and NFs only use the stack modules they require.
This architecture allows NF developers to write generic mod-
ules, which can then be flexibly combined to produce more
complex services by the Controller. Here we present two
examples of the flexibility this provides.

Our TCP Splicer pStack implements a partial TCP stack
capable of redirecting a flow after the first payload data ar-
rives, while relying on a separate load balancing NF to select
the appropriate backend. An example is shown in Figure 3(c),
where an HTTP Load Balancer NF provides the policy to con-
trol the TCP Splicer uStack. To achieve this, the TCP Splicer
publishes a FLOW_REQ message, which indicates that the
handshake is complete and contains a pointer to a recon-
structed bytestream incoming from the client. The HTTP
LB NF subscribes to this event, inspects the request payload,
and publishes a FLOW_DEST message that is returned to the
TCP Splicer. The Splicer can then initiate the 2nd leg of the
TCP connection and begin forwarding packets.

SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

””” 2200

Pi Bl Stack| P3 |
N Stack | P2 EEEEN

Core 0 (NF1)
Core 1 (NF2)
Core 2 (NF3)

,,,,,,,

Core 0 (Stack) W Stack iStack|

coettnF) | P2l W00 s
Core 2 (NF2)
Core 3 (NF3)

P2

Core 0 (Stack)
Core 1 (NF1)
Core 2 (NF2)
Core 3 (NF3)

(
(
(
(

Time
(C)]
Figure 4: Stack pipelining and parallelism

The Splicer is not tightly coupled to the HTTP LB NF—
the Microboxes Controller could, for example, connect the
Splicer’s FLOW_REQ publication to a Memcached LB NF
that would apply a different load balancing policy before
returning a FLOW_DEST message. By filtering how events
are propagated from publishers to subscribers (e.g., based on
destination port), the Controller can connect a single shared
Splicer pStack to many different policy engines in order to
redirect requests for a wide range of protocol types.

The event hierarchy also provides flexibility at the time of
subscription. For example, a simple IDS NF might define an
input port that subscribes to PKT events. Depending on the
needs of the overall Microboxes Application, the controller
might directly link this NF to the PKT output of the Layer
2/3 stack (as shown in Figure 3(c)), or it might connect it
to the PKT/TCP output port of a TCP stack or subsequent
NF. Both of these events match the subscribed type directly
or via inheritance, so the IDS NF will be able to interpret
the messages, ignoring the additional feeds included in the
PKT/TCP variant.

4 ASYNCHRONOUS ;STACKS

In this section we first formalize the consistency challenges
faced by performing NF and stack processing in parallel. We
then describe the techniques used by Microboxes to over-
come these issues.

4.1 Consistency Challenges

In a monolithic or pipelined system where each NF incorpo-
rates its own protocol stack, packets are processed to comple-
tion in one processing context, so there are no concurrency
issues to consider. With Microboxes, execution is spread
across multiple processes, and stack and NF processing can
happen at the same time for packets in the same flow. We
seek to provide identical ordering semantics that is achieved



SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

in a system that employs a protocol stack for each NF. This is
shown in Figure 4(a), where three NFs sequentially process
green, red, and blue packets; each NF is assigned its own
CPU core, depicted in the distinct rows along the Y-axis;
each row in the diagram represents the processing timeline
of the NF on its own core. Once NF 1 performs protocol stack
and its function processing on the green packet, P1, it passes
the packet to NF 2 and begins processing the red packet,
P2, and so on. While this architecture allows for pipelining
across NFs, there clearly is wasted work from performing the
stack processing repeatedly in each NF. However, naively
moving the stack processing to its own core can cause con-
sistency problems between the stack and NF processing. At
a minimum, it adds unnecessary latency.

A safe, but slow approach is shown in Figure 4(b), where
the stack is moved to a separate core from the NFs and the
packets go through the 3 NFs on different cores in sequence.
Here consistency is ensured across both NFs and the proto-
col stack by pipelining all dependent processing. Note that
the NFs do not necessarily need to be idle during the blank
spaces in the timeline—they could process packets from other
flows since stack and NF state are assumed to be indepen-
dent across flows. Thus, while this approach clearly hurts
latency, it may not have a negative impact on throughput if
a scheduler can effectively find packets from other flows to
process while ensuring a consistent ordering.

Stack Consistency: Figure 4(c), shows a far more efficient
timeline used by Microboxes, but this could lead to stack
inconsistency. This happens when an NF attempts to read
the protocol stack associated with a packet, but the stack
state has already changed based on new packet arrivals. For
example, when NF 2 starts processing the green packet P1, it
might query the consolidated stack for protocol state such as
the connection status; however, since the stack has already
finished processing the red packet P2 at that point, the stack
may have been updated to a state that is inconsistent with P1.
It should be noted that while the diagram shows one phase
of stack processing followed by a phase of NF processing for
each packet, in our implementation NFs can respond to stack
events related to the client-side or server-side stack process-
ing. This causes further complex interleavings between the
stack and the NF that Microboxes must handle to prevent
inconsistencies.

NF Consistency: An even more desirable timeline is shown
in Figure 4(d), which incorporates parallelism between the
stack and NFs, as well as among the NFs themselves. To
support this Microboxes requires not only techniques for en-
suring consistency of the stack, but also preventing multiple
NFs from manipulating packet data at the same time. For
network functions operating at line rates, traditional con-
currency techniques such as locks can cause unacceptable

G. Liu et al.

overheads, but several prior works have pointed out that
NF parallelism can be achieved in cases where functions are
primarily read-only or do not read/write the same packet
data structures [28, 30].

While the preceding discussion has focused on packet
processing and the stack, the same issues are relevant for
Microboxes NFs processing events. The event messages that
are published by the stack contain pointers to stack state and
packet data, so consistency is a key concern.

4.2 Asynchronous, Parallel Processing

Microboxes employs four main techniques to ensure that NF
and stack processing is efficient and consistent.

Asynchronous Stack Snapshots: are used to support par-
allelism of protocol stack and NF processing for packets
within the same flow. Stack processing of a packet involves
updates to both TCP connection initiator and responder state,
e.g., sequence numbers, bytestream content, etc. Microboxes
must guarantee that when an NF processes an event, it can
obtain the stack state at the time the event was triggered.
To achieve this, each event message contains a stack snap-
shot, i.e., a representation of the state at the time of the
event and a timestamp. Some of this data, such as sequence
numbers and connection state, can be copied into the event
data structure. However, copying the bytestream for each
event is infeasible. Fortunately, this can be avoided since the
bytestream can be treated as an append-only data structure,
thus the stack snapshot just needs to store a pointer to the
end point of the bytestream at the time of the event. To en-
sure the bytestream behaves as append-only despite packet
re-orderings, the pStack that is creating the bytestream main-
tains a “frontier” pointer indicating the furthest part of the
stream that has been completely filled in. Events related to
the bytestream are only released once the frontier is updated,
and the event indicates that only data prior to that point
is considered stable. The use of stack snapshots avoids the
Stack Consistency problem described above, and allows stack
and NF processing to be performed asynchronously, similar
to Figure 4(c).

Parallel Events: are used to achieve full parallelism of both
NF and stack processing (Figure 4(d)). The Controller can
link several NFs’ subscriptions to the output of a single NF
acting as a “Splitter” In this case the event is produced with
a reference count that is incremented for each NF that must
process it. Once the NFs finish with the event, they respond
to the splitter NF which tracks the reference count. When all
NFs complete, the event can be propagated to the next stage
as dictated by the controller. Having the Splitter NF handle
the responses allows it to merge each NF’s results in an NF-
specific way, if necessary. For example, a Firewall NF might
multicast an event to several different security monitoring



Microboxes: High Performance NFV with Customizable,
Asynchronous TCP Stacks and Dynamic Subscriptions

NFs in parallel, then based on the responses decide whether
to block or allow the packet. As discussed further in Section 6,
we assume that parallel NFs are read-only in nature, and thus
will not conflict with each other when accessing packet or
bytestream data associated with an event; NFs that perform
writes are serialized. This assumption has been shown to be
reasonable for many types of NFs in other studies [28, 30].

Modifying Packets and Stack State: Maintaining consis-
tency of both packet and stack state is complicated when
NFs perform writes. NFs that modify packet (or other event)
data must specify this in their output port definition. The
Controller can then use this to know whether NFs can be
run in parallel. NFs are never allowed to directly update
stack state, since that would cause race conditions between
an NF and the pStack processing other packets in the flow.
Instead, an event-based API is exposed to allow NFs to ma-
nipulate stack state. For example, the TCP pStack subscribes
to FLOW/TCP/TERMINATE events, which might be pub-
lished by a Firewall NF that wants to disallow a connection
and send a RST packet. This avoids concurrency issues with
stack state, but means that NFs must be able to handle asyn-
chronicity, e.g., the Firewall NF may need to drop subsequent
packets already processed by the stack prior to the event.

|uStackA| |NFA1| |NFA2‘

Subscriber List
NIC ™ L2/L3 - N N —/
N~ ! uStack A "
: RSS Subscriber Llst E E>@l
7| L3 [iLi- d r:lg
RS oo s

Parallel Stacks: Finally, to maximize performance in a multi-
core environment it may be necessary to run multiple copies
of the protocol stack on several cores. To support this, Mi-
croboxes uses Receive Side Scaling (RSS) support in the NIC
with a bidirectional flow consistent hash. This ensures that
all packets from a single flow will be sent to the same stacks
and NFs, but allows for different flows to be uniformly dis-
tributed across cores. As shown above, the L2/L3 stack uses
its subscriber table to determine the destination stack type
(A or B) and then publishes packet events to the appropriate
pStack instance, using the RSS value computed by the NIC to
distribute across replicated stacks. NFs can also be replicated
in a similar way (e.g., NF B-1). In addition to flows, data
structures, such as TCP flow state table, are also partitioned
across cores to avoid contention among parallel stacks.

5 CUSTOMIZING ySTACK MODULES

The type of TCP processing performed on each flow can
be configured by adjusting the type of pStack modules that
events are propagated through. Some stacks also allow fine
grained configuration details to be adjusted on a per-flow
basis to eliminate unnecessary processing. The uStacks build

SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

on each other to provide progressively more complex pro-
cessing. Events from these stacks are then sent to NFs that
perform the desired middlebox logic. The Microboxes TCP
stack is broken into the following pStack modules:

Network Layer: When a packet arrives, it first receives
Layer 2/3 processing to determine what flow it is associated
with. This stack maintains minimal state—flow stats such as
packet count and flow status tracking whether the flow is
active or expired. It publishes PKT and FLOW events.

TCP Monitor: A TCP Monitoring stack seeks to track the
TCP state at both the client and server side of a connec-
tion. This allows a monitor NF to reconstruct a bidirectional
bytestream and observe TCP state transitions, for example as
part of a stateful firewall, but does not allow full termination
or arbitrary transformations to the bytestream. To support
such TCP monitoring, we build upon the mOS TCP mid-
dlebox library, which divides stack processing between the
client and server side for each packet [12]. The TCP Monitor
subscribes to PKT from the Network Layer and produces
events including EVENT/DATA_RDY, signifying a change
in the bytestream, and FLOW/ TCP, indicating a change to
the TCP state. NFs that monitor these events can further nar-
row down their scope by specifying for each flow whether
to subscribe to events for updates to the state of only the
client, the server, or both. Finally, the processing overhead
of the TCP Monitor can be tuned by specifying whether to
reconstruct the TCP bytestream on a per-flow basis.

This type of stack is useful for middleboxes that observe
TCP state changes or need bytestream reconstruction. NFs
that subscribe to EVENT/DATA_RDY can make in-place
modifications to the bytestream before it is forwarded to
the client or server, but they cannot make arbitrary changes
to the data since changing the size of packets would dis-
rupt the TCP state (i.e., sequence numbers) at the client and
server. Thus the TCP Monitor stack provides a lightweight
TCP library for middleboxes that primarily observe flows at
the transport layer or above.

TCP Splicer: A desirable operation for proxy-type middle-
boxes is the ability to redirect a TCP connection after the
handshake has been established. For example, an HTTP
proxy might observe the contents of a GET request before
selecting a server and forwarding the request [9, 18]. The
Microboxes TCP Splicer stack simplifies this operation by
extending the TCP Monitor stack, without requiring the com-
plexity of a full TCP endpoint. The Splicer pStack works by
subscribing to the TCP Monitor’s PKT/TCP event to detect
when the client initiates a connection to an IP address con-
figured with the Splicer. The Splicer then responds with a
SYN-ACK packet so that it can process the three-way hand-
shake with the client. The Splicer publishes a FLOW_REQ
event once the handshake completes and data has arrived



SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

from the client. A user-defined NF hosting the proxy logic
will listen for that event and respond with FLOW_DEST con-
taining the new destination IP. Once the Splicer obtains this
information, it initiates a new TCP handshake with the se-
lected destination server. All subsequent packets in the flow
can then go through a fast path in the Splicer that requires
only simple modifications to the TCP header sequence num-
bers [18], allowing zero-copy TCP splicing.

While this could also be achieved by terminating the con-
nection in the middlebox, like in a split proxy [16], that
would require additional TCP logic, which incurs unnec-
essary overhead if the NF only needs to redirect the flow
without modifying the bytestream.

TCP Endpoint: Microboxes NFs can also act as TCP end-
points, for example to host a cache that can respond directly
to some requests. The TCP Endpoint pStack module further
extends the TCP Monitor to contain full TCP logic (conges-
tion control, retransmissions, etc). It then exports events simi-
lar to a socket APL Our implementation leverages mTCP [13],
on which mOS is also based, which allows NFs to work with
an EPOLL interface to the pStack’s sockets. Microboxes NF
developers can then work directly with the EPOLL interface
popular for high performance socket programming.

Supporting TCP endpoints opens new opportunities in
the types of services that can be deployed. For example,
a Microboxes deployment at an edge cloud might provide
transparent middlebox services for most flows, but directly
terminate and respond to a subset of other flows, with func-
tions such as CDN caches or for IoT data analysis.

TCP Split Proxy and Bytestream NFs: The most com-
plex NF types perform transformations on the bytestreams
traversing them; we call these Bytestream NFs. To do so re-
quires two TCP connections, one with the client and one with
the server. This allows both redirection (similar to the TCP
Splicer stack), as well as arbitrary bytestream transforma-
tions. The Microboxes Proxy pStack module is implemented
as two TCP Endpoint stacks. The Proxy uStack publishes
a FLOW_REQ event when a new connection arrives. The
Bytestream NF subscribes to this message and responds with
a FLOW_DEST event to inform the Proxy how to redirect
the flow. The DATA_RDY message type is used both by the
Proxy uStack and the Bytestream NF to indicate when they
have incoming or outgoing data ready, respectively.

6 MICROBOXES IMPLEMENTATION

Microboxes is built on the OpenNetVM [29] NFV framework,
which provides shared-memory based communication for
NFs running as separate processes or containers, and an
IO management layer for starting/stopping NFs and send-
ing/receiving packets over the NIC. Here we focus on the

G. Liu et al.

NF and pStack

Shared Memory Pools
~ Containers

Events Rings
| PKT/TCP |w-
Snapshot

pkt” N Pkts/Data

,E flow* Eﬂ Eﬂ

stack" F-===_T

PKT/TCP

DPI_DETECT PKT/TCP

—— =
! Event Memory S

J
~-

Flow State .
\| [Mtuple ] 23 TTCe MonISphcer_‘I EndPtL 1
: P T A
Stack Memory

Ij
PKT PKT

) NFV 10 (DPDK)  our

Figure 5: Microboxes architecture

implementation of the Microboxes TCP stack and shared
memory-based event communication system.

Stack Modules: Our TCP pStack modules are based on
mOS [12] and mTCP [13], with significant changes to sup-
port customization and a consolidated stack shared by many
NFs. TCP processing in Microboxes is based on the mOS
monitor stack, with additional code from mTCP to support
full endpoint termination. We modified 5.8K lines of C code
in mOS and have an additional 13.5K lines for our NFV man-
agement layer and sample NFs. Our stack incorporates two
key differences from these platforms: 1) we streamline TCP
processing and separate it into our pStack modules to allow
for a modular deployment, and 2) we decouple the stack from
the NF library and use dynamic subscriptions to control how
events are delivered.

mOS and mTCP are designed to be fully-functional, com-
patible TCP stacks, whereas Microboxes seeks to provide
a range of stack types depending on NF needs. Thus the
minimalist Microboxes TCP Monitor pStack does not main-
tain, for example, ACK/retransmission queues, resulting in
a smaller memory footprint and higher performance. For
stack modules that require termination we use mTCP, with
integration into our platform so that packets arrive as events
from the lower-layer stacks instead of directly accessing the
NIC. We also implement the Splicer yStack module which
extends the TCP Monitor to add redirection capabilities.

From our observation that the TCP stack can often be the
bottleneck, we move unnecessary processing out of the stack
and into the NF, for example we extract the event processing
code in mOS to a separate library which is incorporated
into the NFs themselves to perform flow-level event filtering.
Each stack module can be run in its own process, although
we combine the Layer 2/3 and TCP Monitor stacks into one
since L2/3 processing adds minimal extra cost. This separates
the stack and NFs into different protection and performance
domains, providing greater isolation.

Together, these changes allow us to tune the TCP process-
ing performed on a per-flow basis, and ensures that stack
processing is made as lightweight as possible.



Microboxes: High Performance NFV with Customizable,
Asynchronous TCP Stacks and Dynamic Subscriptions

SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

Middlebox App pStack Description
DS Monitor First a DPI NF uses the nDPI [3] open source library to detect application protocols.
(DPI+Sig_Match) Then the Signature_Match NF examines a set of inspection rules to match attack signatures.
Monitor Monitor A Flow_Stats NF publishes statistics events for network connections.
(Flow_Stats+Logger) A Logger NF records the timestamp and values of each event it receives.
Layer 4 LB Layer 2/3 This NF uses a SI—tuple hash to split trgfﬁc and rewrite the packet’s destination port and address.
It does not require TCP stack processing.
Layer 7 LB Splicer The HTTP_LB NF uses the HTTP GET request to choose a destination server and balance the load. The
Splicer pStack maintains the connection with the client side and initiates the connection to the selected backend.
Proxy Split Proxy Establishes separate sockets to both client and server, then uses EPOLL to check for data in events from either
socket, and pushes that data from one socket to another.
Lighttpd Endpoint | This legacy web server can serve static files (jpg/html/etc) using the TCP Endpoint pStack.

Table 2: Sample Microboxes Applications using different yStack modules.

Shared Memory and TCP State: Microboxes sets up two
shared memory pools: Event Memory and Stack Memory as
shown in Figure 5. The first is used to store packets, events,
reassembled flow data, and communication queues which
support zero-copy data movement between NFs and uStacks.
The Stack Memory pool stores the flow tables used to main-
tain per-flow TCP state, including information such as se-
quence numbers and connection status. This data is stored
in a separate pool and can only be accessed via a restrictive
API to keep all state data read-only for NFs.!

Microboxes includes an optimized read path that elimi-
nates all modifications to TCP state to improve concurrency.
First, this is achieved by maintaining TCP state in the shared
Stack Memory, allowing zero-copy access to much of the
data for NFs (with the exception of data copied into stack
snapshots to ensure consistency). Second, we avoid indirec-
tions caused by hash table lookups as much as possible by
providing direct pointers to state table entries and the re-
assembled bytestream with event messages. This can have a
substantial impact on services operating at line rates. Third,
operations to read TCP state are all stateless functions, e.g.,
when querying the bytestream to retrieve data, the API does
not track the position of the last read; instead the API is
stateless and requires the NF to specify the desired offset.
This is in contrast to the original mOS/mTCP APIs, which
updated internal state with some operations. For example,
mtcp_peek updates the offset of already retrieved data,
and mtcp_ppeek has an on-demand memory allocation,
causing these operations to update stack state and requiring
them to be performed sequentially. By making these APIs
stateless, Microboxes has fewer cache invalidations and con-
currency issues to deal with than mOS when extended to
support NF chains.

Microboxes divides flows using RSS (Receive Side Scaling)
so that each TCP pStack instance maintains its own set of

!Microboxes assumes that NFs are not malicious and will not try to corrupt
TCP state or snoop on other flows’ data by using arbitrary memory oper-
ations; we believe this is an acceptable assumption for network provider
operated NFV platforms where NFs are thoroughly vetted before deploy-
ment. For less secure, multi-tenant environments, the state memory pool
could be kept in read-only memory with finer grained access controls.

flows in partitioned memory. This prevents any concurrent
updates to shared cache lines from different stack instances,
which would cause cache coherence traffic.

Stack State Snapshots: Microboxes embeds Stack Snap-
shots in TCP event messages so that the TCP stack can
continue updating flow table state without inconsistencies
from concurrent updates. The stack snapshot only needs to
contain data from the state table that could be potentially
modified when the stack processes subsequent packets in
the flow, but is not accessible in the packet that is referenced
by the event. For example, the latest sequence number of the
sender can be trivially read from the packet itself (referenced
by the event), but the latest sequence number of the receiver
needs to be stored in the stack snapshot since it is not avail-
able in packet data and may be updated if a return packet
arrives. Similarly, the current connection status (e.g., await-
ing SYN-ACK, connected, etc.) is not found in the packet and
could be updated, so it also must be included in the snap-
shot. An offset pointer for the reconstructed bytestream is
provided in the snapshot, allowing the stack to append data
from subsequent packets of the same flow without affecting
consistency. In total, the stack snapshot is only 23 bytes,
which is substantially smaller than the full state. The time
for making the snapshot for each packet is around 76 cycles,
even for a large number of flows.

Event Messages: For each event, a single message data
structure is allocated in the shared Event Memory pool by its
publisher. The producing NF then checks its subscription list
and adds a pointer to the message data structure for the event
queues of all subscribed NFs. As shown in Figure 5, each NF
has a single incoming queue, but this can be linked to multi-
ple output ports from one or more other NFs/uStacks. Event
Messages are designed to be compact, so they only include
metadata such as the event type and snapshot. For packet
data or for state that may need to be modified by NFs, the
structure contains data pointers that can be used to reference
larger amounts of data, e.g., the packet that triggered the
PKT event or the TCP Monitor’s flow state. The Microboxes
"run loop" on each NF polls for incoming events and triggers
a handler function that the NF specifies for each event type.



SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

1 void startIDS () {

2 mb_nf_mem_init(cntrlr); // map shared memory
3 // announce subscribed types to controller

4 mb_sub(cntrlr , PKT_TCP, cb_noop);

5 mb_sub(cntrlr , DPI_DETECT, cb_detect);

6 // request an output port for publication type
7 port = mb_pub(cntrlr , EVENT IDS_ALERT) ;

8 mb_nf run(); // enter run loop

9}

10 void cb_detect (DPI_ DETECT msg m) {

11 if (m.dpi_app_type == HTTP)

12 mb_up_sub(cntrlr , PKT_TCP, e.flow, cb_http);
13 else if (m.dpi_app_type == SQL)

14 mb_up_sub(cntrlr , PKT_TCP, e.flow, cb_sql);
16 void cb_sql (PKT_TCP_msg m) {

17 if (sql_injection_attack (m. payload)) {

18 IDS_ALERT msg m2 = mb_new_msg(IDS_ALERT)
19 // fill in m2
20 mb_publish_event(port, m2)

21}
22 }

Listing 1: IDS Signature Matching NF

Since all events arrive in a single queue, NFs process them
in arrival order regardless of event type. Our uStack defines
its TCP events using the mOS base events as building blocks,
so it inherits the same ordering enforced by mOS, and our
message communication mechanism guarantees the events
are processed in order for NFs within a chain. However, we
don’t provide ordering for NF internal events and we assume
this is handled by the developers.

Sample Applications: We have ported a set of middlebox
applications into Microboxes using our event and stack APIs.
Where possible, we have decomposed the applications into
separate NF modules and offloaded processing to the stack
rather than inside the NF. Table 2 lists out these applications
and the type of pStack they make use of.

These applications provide a range of examples with dif-
ferent protocol processing needs. Most applications have
been decomposed into multiple NF modules to further stress
our event system. In addition to writing our own NFs, we
also include the Lighthttp web server to illustrate support for
legacy applications. The web server uses our TCP endpoint
pStack. The Controller can also link together several of these
applications, for example to provide a Layer 7 HTTP load
balancer in front of the Lighttpd server. These deployments
involve multiple yuStacks that Microboxes will automatically
keep consistent.

In Code Listing 1, we present simplified code for our IDS
Signature Matching NF (the full version performs more com-
plex analysis based on the pattern matching code of Snort).
The startIDS () function initializes subscriptions, setting
a default "no op" handler for incoming TCP packets and the
cb_detect () callback for events arriving from the DPI
NF that detects application-layer protocols (lines 4-5). Based

G. Liu et al.

on the DPI detection event’s type, the NF updates the sub-
scription to the appropriate callback function to perform
signature matching on subsequent packets that arrive in the
flow (lines 11-14). If an attack is detected, anew IDS_ALERT
message is published (line 20).

7 EVALUATION

Testbed Setup: Our experiments were performed on the
NSF CloudLab testbed [24] with "c220g2" type servers from
the Wisconsin site. Each server has Dual Intel Xeon E5-2660
v3 @ 2.60GHz CPUs (210 cores), a Dual-port Intel X520
10Gb NIC and 160GB memory. All servers run Ubuntu 14.04
with kernel 3.13.0-117-generic and use Intel’s DPDK v16.11.
We use two sets of traffic generators, mTCP-based [13] web
client and server for high speed tests, and Nginx 1.4.6 and
Apache Bench 2.3 for setting up multiple servers and splitting
up web traffic.

7.1 Protocol Stack Performance

Stack Consolidation: To evaluate the benefit of consoli-
dating the stack for chained NFs, we first port the mOS
middlebox library to our NFV platform. mOS by itself does
not support chaining, and assumes a single NF is used with
complete control over the NIC. A straightforward port of
chained mOS NFs (labeled "mos" in figures) uses a packet
interface between instances and performs stack processing
for each NF. In contrast, our Microboxes system (labeled
"mb" in figures) only needs to perform stack processing once,
and then forwards the stack events through the chain of
NFs. For both cases, the NFs themselves perform negligible
processing and we use a workload of 4000 concurrent web
clients accessing files 64B or 8KB long.

The results in Figure 6a and Figure 6b, show that as the
chain length increases, the throughput of Microboxes re-
mains mostly flat, while mOS drops quickly. For a chain
of 6 NFs, Microboxes outperforms mOS by up to 105% for
requests for a 64B file and 144% for 8KB file (including batch-
ing). Batching events at each NF contributes around 30% of
this improvement (compare mb-batch vs. mb); we use batch-
ing for the remaining experiments. Microboxes does see a
throughput decrease when the chain is longer than 6 since it
has to use cores on another socket and pay NUMA penalties.

As shown in Figure 6¢, Microboxes also reduces latency
by 20% due to stack consolidation with longer NF chains.
mOS gets marginally better latency only when there is one
NF since it runs the stack and NF on the same core, while
Microboxes runs the stack on a separate core and cross-core
communication impacts the performance for this case.

Parallel Processing: To evaluate the performance of par-
allel processing, we compose multiple DPI NFs together in
a sequential or parallel manner. The first instance is set up



Microboxes: High Performance NFV with Customizable,
Asynchronous TCP Stacks and Dynamic Subscriptions

SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

6 o 125 m
Q . | Q 3
2 M a 1 5\\ Y
Q 41 S { | : =
5 3 5 0.75 77 i : ‘ =
a 2 ——e>g — o
-§‘ 2r bbmg?é = -‘:Sf ol mos —x— -\’__o g
mb-batc - b —e—
S21r £ 025 1" ppateh —— \( @
(= 0 1 1 1 1 1 1 ] == 0 1 1 1 | | | &J 0 1 | | | | |
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
#NFs #NFs #NFs
(a) 8KB Reqs (b) 64B Reqs (c) Latency

Figure 6: Microboxes improves throughput and latency by eliminating redundant stack processing in chains.

200 '3‘ 20 = 6 Al &
— o Client Flows (CF) =
g 160 4 il inini giuinie sheinin 4 816 85 CF, Server Events &3 |/
< 120 seq o =12 =4 Dynamic %
) para-8KB - -0- - S 5 Dynamic w/Buffer
c seq-64B —+— o a3
o 80 £ 8 <
© 4 =] =]
- 40 o o <] Z
E £ <Y
0 1 1 1 1 i = = 0 m[—‘ N
1 2 3 4 5 6 1 2 3 4 5 6 Chain Type
Chain Length #Stacks

(a) Parallel NFs

(b) Multi-Stack

(c) DPI-Chain

Figure 7: (a) Parallel processing performance (b) Multistack performance (c) Event subscriptions impact

as the head of the chain and controls the parallelism for the
following instances. The throughput for parallel and sequen-
tial chains are similar (not shown). We can see the latency
difference from Figure 7a. As the number of NFs increases,
the latency for sequential chains increases linearly, while the
parallel chain is almost flat. For 6 NFs, parallel processing
can reduce latency 32% for a 64B web request and by 20% for
8KB web requests.

Scalability: We next evaluate the scalability of our pStack
when using multiple cores and two dual port NICs. We use
two pairs of clients and servers to generate the web traf-
fic (8KB HTTP file requests) through Microboxes. At each
stage of the experiment, we add one more core to host the
stack and use the RSS value to split flows across the stacks.
From Figure 7b, we can see a linear speedup for total pro-
cessing rate until the Ethernet link (2*10Gbps) becomes the
bottleneck.

These experiments show that our architecture can effi-
ciently run chains of NFs with improved throughput and
latency characteristics due to elimination of redundant work
and better parallelism. We next show how customizing the
stack for different NFs can provide further performance im-
provements while maintaining deployment flexibility.

7.2 Load Balancer: Flexibility and Speed

In this experiment, we show how our layered TCP stack
can provide different performance and functional require-
ments to meet an NF’s needs. We use Nginx as a web server
and Apache Bench as the client to generate web traffic. We
consider four different Microboxes NFs to load balance the

traffic: L4_LB, L7_LB and Bytestream Proxy, based on our
Monitor, Splicer and Split Proxy Stacks respectively. We com-
pare against a baseline of the simple DPDK L2 forwarder
example NF and HAProxy [2], a popular open source load
balancer which uses Linux kernel-based networking. We also
evaluate a "L7 LB + Cache" approach which combines our
HTTP load balancer with the Lighttpd server running on
the TCP Endpoint pStack. We consider the case where 50%
or 100% of the requests are redirected by the Splicer to the
local Lighttpd server that acts as a faster cache compared to
Nginx.

From Table 3, we can see L4_LB has the lowest latency
and highest throughput of the Microboxes solutions. This is
as expected since it only looks at header information, and
does minimal TCP processing (e.g., no bytestream recon-
struction). This is a valid choice for simple load balancing
scenarios where redirection does not need to be based on the
content of the request. The L7_LB adds more overhead since
it needs to redirect the connection and look at application
data to select a server. However, it also provides greater flex-
ibility since the destination server can be determined after
the HTTP GET request has been received. The range of appli-
cations supported by our system is best demonstrated by the
L7 LB + Cache test since it shows the value of being able to
deploy both middleboxes and end server applications on an
integrated platform. Using Lighttpd as a cache can increase
throughput by 29% or more compared to directing requests
to Nginx via the L2 forwarder. The Microboxes Bytestream
Proxy has the largest overheads as it needs to maintain con-
nections for both server side and client side. With this cost,



SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

NF Type Latency(us) | Reqs/s | Norm.
DPDK L2 Fwd 189 30,174 1
HAProxy 375 18,356 0.61
L4 LB 199 28,894 0.96
L7 LB 210 27,772 0.92
L7 LB + 50% Cache 129 38,981 1.29
L7 LB + 100% Cache 90 41,372 1.37
Bytestream Proxy 255 23,984 0.79

Table 3: The Bytestream Proxy, L4 and L7 load bal-
ancers use different pStacks to provide trade-offs in
load balancer flexibility and performance; all can out-
perform HAProxy, and integrating a cache with the
LB can increase throughput by 1.29X or more.

however, comes the opportunity to transform the bytestream
in arbitrary ways. HAProxy also uses two sockets, yet it has
substantially higher latency and lower throughput than the
other approaches since it is not based on an optimized stack
or an NFV IO platform.

This experiment demonstrates the customization that Mi-
croboxes can offer—depending on the needs of a specific load
balancer it can select the appropriate stack (minimalist TCP,
Splicer, or proxy stack). Compared to a traditional approach
like HAProxy, which is tightly coupled to a full TCP stack im-
plemented in the kernel, this can provide between 31% to 57%
improvement in throughput and a 32% to 47% reduction in
latency while only using one core. Extending this further to
use the endpoint stack to host a legacy web server as a cache
provides further benefits. To our knowledge, Microboxes is
the first NFV platform to support a unified deployment of
middleboxes and servers.

7.3 1IDS: Customizing Subscriptions

In this experiment, we explore how the ability to filter the
stack events an NF subscribes to affects performance. We
chain two NF modules, DPI and Signature_Match, together
to work as an IDS middlebox. Events from the TCP Moni-
tor pStack go through DPI first and then Signature_Match.
The throughput of this chain is dominated by the Signa-
ture_Match module as it is much slower than DPI. We use
five different configurations to show how stack customiza-
tion and dynamic subscriptions can affect the performance.

For the first configuration, both modules register for the
PKT_IN event of the TCP Monitor Stack, causing events
about all packets to go through both NFs. This configuration
gets the lowest throughput since both NFs receive and pro-
cess two events for each packet: one when the stack updates
the client-side state and one when it updates the server-side
state. For the second configuration, we deregister events for
server side flows and only allow events related to the client’s
packets to pass through, effectively reducing the number of

G. Liu et al.

events by about half. For the third configuration, we deregis-
ter the events generated by the client stack and only observe
events related to server stack updates caused by packets from
the client, and this reduces another half of events. For most
IDS deployments, this would be sufficient: the IDS only needs
to monitor traffic entering from untrusted clients, and it does
not need to separately track TCP state for both the client
and server sides. From Figure 7c, we can see 1.2x and 2.6x
throughput improvements shown in the second and third
bar due to narrowing the subscribed events when compared
with the first configuration.

Next we enable dynamic subscriptions. For the fourth con-
figuration, DPI subscribes to PKT/TCP events for the server
stack, as in case 3 above. However, we now have the DPI pub-
lish events based on the type of protocol identified, and the
Signature_Match NF subscribes for EVENT/DPI_DETECT
messages. Thus when DPI identifies a flow as HTTP, it
triggers the event and then uses dynamic subscriptions to
unsubscribe from PKT/TCP events for that flow (since it
has already been identified). At the same time, the Signa-
ture_Match NF begins to subscribe to the PKT/TCP events
so that it can perform its analysis (e.g., scanning for SQL injec-
tion attacks). If a specific signature is found, Signature_Match
will publish a new EVENT/IDS_ALERT event and deregis-
ter the current flow. By using dynamic filtering, we reduce
the number of processed events by more than 50%, and pro-
vide nearly 5x throughput increase compared to the static
filtering in case 3. For the last configuration, we enable flow
reassembly so that DPI and Signature_Match can subscribe
and publish DATA_RDY events. This allows the NFs to detect
patterns that span multiple packets, at the expense of about
15% overhead to reassemble the packet payload and create
the bytestream.

This experiment shows the value of enabling NFs to tune
their subscriptions and to be able to use events to communi-
cate information. Prior systems would send far more packets
to each NF for processing (similar to cases 1-3), while our
approach allows NFs to be directly alerted of information
they need and tune their subscriptions accordingly.

7.4 IDS+Mon: Dynamic, Parallel Events

We now evaluate a more complex group of NFs and show how
dynamic subscriptions and parallel processing can improve
performance under different configurations. Our setup is
based on the real world services evaluated in NFP [28].

We first configure the five NFs as a sequential or paral-
lel chain as shown at the top of Figure 8. In the "Default"
configuration, all NFs in the chain subscribe to PKT/TCP
events; however, since the Signature_Match and Logger mod-
ules are much more expensive than the others they are
the performance bottlenecks. To tune the chain, we next



Microboxes: High Performance NFV with Customizable,
Asynchronous TCP Stacks and Dynamic Subscriptions

| TCP |-+{ DPI |-+{ S1G_Match |->| Flow_stats |-+{ Logger || LB |

Sequential
| TcP |-+ DPI Flow_Stats [+ Logger
Parallel
240 1 Default mmm
200 | DPI_DETECT EE3
— LONG_FLOW ==ZJ
"
5160 Both =3
120
[0}
£ 80
-
40

0
Parallel

Sequential

Figure 8: Parallelizing a long chain and using dynamic
event filtering provides substantial latency benefits

setup the DPI_DETECT event described in the prior section
which causes the DPI and Signature_Match NFs to dynami-
cally tune their subscriptions. This reduces the load on the
first two NFs, improving the average latency as shown by
the “DPI_DETECT” bars in Figure 8. Next we consider cus-
tom events for the Flow_Stats and Logger NFs. We define a
LONG_FLOW event published by Flow_Stats once the aver-
age packet length of a flow is larger than a threshold. The
Logger subscribes to this event, and adjusts its subscription
so that it only logs events about long running flows. Finally,
we consider the combination of both of these custom events,
which provides a further improvement in performance. Com-
pared to the sequential chain, the parallel configuration pro-
vides between a 3%-13% latency reduction.

8 RELATED WORK

TCP Stacks: There are several research efforts on high per-
formance networking stacks [5, 13, 15, 20, 21, 23] but most
are specific to end-host applications. We present a compar-
ison of NFV frameworks [6, 12, 22, 26] that support TCP
protocol processing in Table 4. mOS [12] provides a reusable
TCP stack to facilitate L4-L7 NF development for monolithic
architecture, however it focuses on a single NF, not a chain.
Simply replacing each NF’s stack with mOS and hooking
them together will incur multiple copies and cause perfor-
mance issues. Comb [26] could support both pipelined and
monolithic applications and has focused on consolidating
applications and managing resources at the network-wide,
without addressing the stack or NF configurability at the
application level. Bro [22] presents a stack and event man-
agement framework specific to Intrusion Detection System.
However its modules are tightly-coupled which makes it
hard to extend into other applications. FlowOS [6] presents a

SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

Framework | Architecture | Flexibility | Events | Chain
Microboxes pipelined high yes yes
mOS [12] monolithic high yes no
ipelined
Comb [26] 5) rrf)onolithic low no yes
Bro [22] monolithic medium yes no
FlowOS [6] monolithic medium no yes

Table 4: A comparison with other middlebox frame-
works that support TCP protocol processing,.

flow-level programming model for middleboxes. It hides the
low-level packet process but it relies on Linux kernel stack
which is not optimized for middleboxes.

Microboxes provides a shared customizable TCP stack
for each group of NFs which is designed to remove redun-
dant stack processing while maintaining consistency require-
ments. Our event system is inspired by the user-defined
events in mOS and Bro, but we extend these with a meaning-
ful type hierarchy and support for cross NF coordination.

Modularity and Parallelism: Click has been a popular
platform to build network functions due to its modularity
and extensibility. A set of individual elements are connected
via pull or push connections to build a more complex ap-
plication. Click also inspired a series of other modular NFV
architectures [4, 8, 17, 26]. However, without native TCP sup-
port in Click, these platforms are restricted to L2 or L3 NFs.
NFP and Parabox [28, 30] focus on NF level parallelism, they
can automatically analyze NF dependencies and reconstruct
a service graph with parallel NFs to improve performance.
P4 [7] is a configuration language for packet processors and
it enables parallelism by identifying table dependencies.
Microboxes works along both directions and is compli-
mentary to these works. By decomposing a stack into several
customizable building blocks, Microboxes promotes paral-
lelism. We mainly focus on asynchronous processing that
allows parallelism between NFs and the protocol stack.

9 CONCLUSIONS

Existing NFV frameworks focus on efficient packet move-
ment and layer 2/3 processing, yet many key middlebox
applications require higher level protocol processing. The
Microboxes architecture balances the goals of consolidating
protocol processing and supporting a customizable stack that
can be tailored to the needs of individual flows. We achieve
this by designing a modular, asynchronous TCP stack and
efficient, event-based communication mechanisms to link
together NFs into complex applications. We introduce op-
timizations such as stack snapshots to ensure stack consis-
tency while maintaining high performance. We believe that
Microboxes will provide a valuable framework for NF devel-
opers to deploy transport-layer-and-above middleboxes or
end-services.



SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

Acknowledgements: We would like to thank our shepherd
KyoungSoo Park, the anonymous reviewers, and Jean Tour-
rilhes and Puneet Sharma from HPE for their detailed com-
ments and valuable feedback. This work was supported in
part by NSF grants CNS-1422362 and CNS-1522546.

REFERENCES
[1] Data plane development kit (dpdk). http://www.dpdk.org/.

[
[3
[

[10

[11
[12

(13

[15

]
]
]

=

]

—

—

[t

= O

2] Haproxy. http://haproxy.1wt.eu/.

ndpi | ntop. http://www.ntop.org/products/ndpi/.

4] B. Anwer, T. Benson, N. Feamster, and D. Levin. Programming slick

network functions. In Proceedings of the 1st ACM SIGCOMM Sympo-
sium on Software Defined Networking Research, SOSR ’15, Santa Clara,
California, USA, June 17-18, 2015, 2015.

A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. IX: A protected dataplane operating system for high
throughput and low latency. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). USENIX Association,
2014.

M. Bezahaf, A. Alim, and L. Mathy. Flowos: A flow-based platform
for middleboxes. In Proceedings of the 2013 Workshop on Hot Topics in
Middleboxes and Network Function Virtualization, HotMiddlebox *13,
pages 19-24, New York, NY, USA, 2013. ACM.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:
Programming protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev., 44(3):87-95, July 2014.

A. Bremler-Barr, Y. Harchol, and D. Hay. Openbox: A software-defined
framework for developing, deploying, and managing network func-
tions. In Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference, Florianopolis, Brazil, August 22-26, 2016, 2016.

A. Cohen, S. Rangarajan, and H. Slye. On the Performance of TCP
Splicing for URL-aware Redirection. In Proceedings of the 2Nd Con-
ference on USENIX Symposium on Internet Technologies and Systems -
Volume 2, USITS 99, pages 11-11, Berkeley, CA, USA, 1999. USENIX
Association.

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzar, F. Montesi,
R. Mustafin, and L. Safina. Microservices: Yesterday, today, and tomor-
row. Present and Ulterior Software Engineering, 2017.

S.Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy. Softnic:
A software nic to augment hardware. Technical Report UCB/EECS-
2015-155, EECS Department, University of California, Berkeley, May
2015.

M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park. mos: A reusable
networking stack for flow monitoring middleboxes. In 14th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2017, Boston, MA, USA, March 27-29, 2017, 2017.

E.Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Thm, D. Han, and K. Park.
mtcp: a highly scalable user-level TCP stack for multicore systems.
In Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014,
2014.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click
modular router. ACM Trans. Comput. Syst., 18(3):263-297, 2000.

R. Laufer, M. Gallo, D. Perino, and A. Nandugudi. Climb: Enabling
network function composition with click middleboxes. In Proceedings

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

G. Liu et al.

of the 2016 Workshop on Hot Topics in Middleboxes and Network Function
Virtualization, HotMIddlebox ’16, New York, NY, USA, 2016. ACM.
F. Le, E. Nahum, V. Pappas, M. Touma, and D. Verma. Experiences

Deploying a Transparent Split TCP Middlebox and the Implications for
NFV. In Proceedings of the 2015 ACM SIGCOMM Workshop on Hot Topics

in Middleboxes and Network Function Virtualization, HotMiddlebox ’15,
pages 31-36, New York, NY, USA, 2015. ACM.

B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, and P. Cheng.
Clicknp: Highly flexible and high-performance network processing
with reconfigurable hardware. In Proceedings of the ACM SIGCOMM
2016 Conference, Florianopolis, Brazil, August 22-26, 2016, 2016.

D. A. Maltz and P. Bhagwat. MSOCKS: an architecture for transport
layer mobility. In IEEE INFOCOM °98. Seventeenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings,
volume 3, pages 1037-1045 vol.3, Mar. 1998.

J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, et al. ClickOS
and the art of network function virtualization. In USENIX NSDI, 2014.
Z.Niu, H. Xu, D. Han, P. Cheng, Y. Xiong, G. Chen, and K. Winstein.
Network stack as a service in the cloud. In Proceedings of the 16th ACM
Workshop on Hot Topics in Networks, HotNets-X VI, pages 65-71, New
York, NY, USA, 2017. ACM.

S. Pathak and V. S. Pai. Modnet: A modular approach to network stack
extension. In 12th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 15, Oakland, CA, USA, May 4-6, 2015, 2015.
V. Paxson. Bro: a system for detecting network intruders in real-time.
Computer Networks, 31(23-24):2435-2463, 1999.

S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe. Arrakis: The operating system is the con-
trol plane. In Proceedings of the 11th USENLX Conference on Operating
Systems Design and Implementation, OSDI' 14, Berkeley, CA, USA, 2014.
USENIX Association.

R. Ricci, E. Eide, and C. Team. Introducing CloudLab: Scientific infras-
tructure for advancing cloud architectures and applications. ; login::
the magazine of USENIX & SAGE, 39(6):36-38, 2014.

L. Rizzo. netmap: A novel framework for fast packet i/o. In USENIX
ATC, 2012.

V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and
implementation of a consolidated middlebox architecture. In Proceed-
ings of the 9th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012, 2012.
J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making Middleboxes Someone else’s Problem: Network Pro-
cessing As a Cloud Service. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’12, pages 13-24, New York,
NY, USA, 2012. ACM.

C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu. NFP: enabling network
function parallelism in NFV. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, SSIGCOMM 2017,
Los Angeles, CA, USA, August 21-25, 2017, 2017.

W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi, K. Ra-
makrishnan, and T. Wood. OpenNetVM: A platform for high perfor-
mance network service chains. In HotMiddlebox. ACM, 2016.

Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich, A. Shaikh,
and Z. Zhang. Parabox: Exploiting parallelism for virtual network
functions in service chaining. In Proceedings of the Symposium on SDN
Research, SOSR 2017, Santa Clara, CA, USA, April 3-4, 2017, 2017.



	Abstract
	1 Introduction
	2 Middlebox Stack Diversity
	3 Microboxes Design
	3.1 Events
	3.2 Stacks
	3.3 Microboxes Controller
	3.4 Microboxes Applications

	4 Asynchronous Stacks
	4.1 Consistency Challenges
	4.2 Asynchronous, Parallel Processing

	5 Customizing Stack Modules
	6 Microboxes Implementation
	7 Evaluation
	7.1 Protocol Stack Performance
	7.2 Load Balancer: Flexibility and Speed
	7.3 IDS: Customizing Subscriptions
	7.4 IDS+Mon: Dynamic, Parallel Events

	8 Related Work
	9 Conclusions
	References

