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Abstract

5G edge clouds promise a pervasive computational infras-

tructure a short network hop away, enabling a new breed

of smart devices that respond in real-time to their physical

surroundings. Unfortunately, today’s operating system de-

signs fail to meet the goals of scalable isolation, dense multi-

tenancy, and high performance needed for such applications.

In this paper we introduce EdgeOS that emphasizes system-

wide isolation as fine-grained as per-client. We propose a

novel memory movement accelerator architecture that em-

ploys data copying to enforce strong isolation without perfor-

mance penalties. To support scalable isolation, we introduce a

new protection domain implementation that offers lightweight

isolation, fast startup and low latency even under high churn.

We implement EdgeOS in a microkernel based OS and demon-

strate running high scale network middleboxes using the Click

software router and endpoint applications such as memcached,

a TLS proxy, and neural network inference. We reduce startup

latency by 170X compared to Linux processes, and improve

latency by three orders of magnitude when running 300 to

1000 edge-cloud memcached instances on one server.

1 Introduction

The Internet of Things foretells the deployment of billions

of devices requiring processing close to the data source to

avoid excess bandwidth consumption in the network core.

Similarly, latency sensitive cyber physical systems desire com-

munication and processing at millisecond scale, preventing

the use of standard cloud platforms. Use cases such as these

motivate the demand for “edge clouds”, tiny data centers

that can be deployed as close to users as possible (e.g. at

an Internet Service Provider (ISP) or a nearby telco central

office [55]).

An edge cloud site is expected to serve a large number

of clients with high performance. Many edge services such

as Network Function Virtualization (NFV) middleboxes that

must act as a “bump in the wire” are latency-sensitive and

throughput-intensive. However, given the large number of

edge cloud sites, each is expected to only have a small number

of powerful servers due to space, power, and cost constraints

(e.g. the HPE EL4000 has 64 cores and AWS Snowball Edge

has up to 52 cores). To utilize resources in an efficient, elastic

and scalable way, an edge cloud must support dense multi-

tenancy—each edge cloud will be highly resource constrained

compared to a centralized cloud, yet it may need to host many

securely isolated services for the clients connected to it, and

often these clients have a short lifespan (e.g. a mobile user),

leading to high churn.

Unfortunately, the combination of limited resources, large

number of clients, and diverse services of edge clouds pose

major challenges for traditional system software designs. To

protect clients and services, an edge system needs to provide

two types of isolation:

• Client Isolation: Multiplexing an edge service among mul-

tiple clients exposes them to malicious exploitation that

could impact every client (e.g. a compromise in the TLS

implementation as in Heartbleed). Thus ideally, untrusted

clients should not share a protection domain (e.g. a process,

a container, or a virtual machine).

• Service Isolation: An edge server needs to serve multiple

services from different tenants. Some services may be vul-

nerable and tenants may even be malicious. Thus, a service

should not share any resources, such as memory, with other

untrusted services.

Current systems fail to provide both high performance

and strong isolation–particuarly between clients. Recent Net-

work Function Virtualization platforms achieve high through-

put with the use of kernel-bypass networking and zero-

copy techniques, but they often trade isolation for perfor-

mance [23, 27, 72]. This works for a single service, but the

edge cloud needs to serve multiple services from different ten-

ants. Lightweight virtualization techniques based on uniker-

nels [32] and hypervisor optimizations [47] have been pro-

posed to reduce boot times and density, but don’t address

providing many isolated clients high throughput. Recent sup-

port for HW virtualization, such as SR-IOV capable NICs,

reduces virtualization layer costs, but comes at the expense of



scalability. It works for a few dozen clients, but can’t be used

for an edge server that needs to support thousands of clients.

We address these challenges by designing EdgeOS, a new

system that achieves the difficult combination of strong isola-

tion, efficient communication, and fast boot times. Our key

idea is to dynamically start a new isolated domain for each

client, and to use data-copying to move messages. This idea is

based on two intuitions. First, for a large number of short-lived

clients, starting a new protection domain can be more efficient

and secure than maintaining many long running yet infre-

quently accessed ones. Second, in contrast to long-standing

networking subsystem guidance that dictates that zero-copy

is necessary [24, 66] – often at the price of isolation, we ob-

serve memory can push data at sufficiently high rates for edge

environments such as 5G base stations that have bandwidths

in the low 10s of Gb/s [21, 39]. Thus memory copying can

provide stronger isolation, without becoming a performance

bottleneck as long as it is faster than line-rate.

Based on these insights, EdgeOS contributes:

• A carefully optimized “Memory Movement Accelerator”

(MMA) communication and buffer management architecture

that enforces isolation with data copying, while retaining

high throughput and low latency.

• A “Feather Weight Process” (FWP) that redefines the pro-

cess abstraction to a minimal memory footprint and set of

capabilities needed to support dense deployments of edge

computation, and provides strong isolation between each

client in multi-tenant environments.

• A control plane with flexible routing and FWP chain

caching to support microsecond speed initialization of com-

plex services in high churn environments.

Combined, these features produce a novel architecture that

eschews the current trend towards zero-copy I/O in order

to provide stronger per-client isolation, yet still offers better

performance scalability, reduced tail latency, and dramatically

better support for high churn edge environments than any

system we are aware of.

We extend the Composite µ-kernel [67] to implement the

EdgeOS prototype. We target two key categories of edge

applications: network functions (e.g., middleboxes from the

Click software router [28]) and latency sensitive endpoint

services (e.g., HTTPS servers, neural network inference, and

the memcached key-value store). These services can be com-

bined to build flexible service chains, while providing stronger

isolation and latency guarantees than existing approaches.

Our evaluation illustrates how our isolation and commu-

nication abstractions offer dramatically better scale, density,

and performance predictability than traditional approaches.

We execute 1000s of FWPs per host, instantiate them 170X

faster than a Linux process, maintain a memcached latency

under 1 ms even when running 600 isolated instances on a

single host, improve the throughput of HTTPS processing by

almost a factor of 2.3, and even CPU-bound neural network

inference tail latency improves by almost 50%.

2 Motivation

We first introduce our threat model and isolation properties.

Then we discuss performance challenges that edge clouds

pose to existing isolation platforms, motivating the need for a

redesign of the underlying communication mechanisms and

OS primitives.

2.1 Threat Model

There are three types of parties in our model: (1) A system

run by the trusted edge cloud operator that provides isolation

mechanism and hosts edge services. (2) Edge services de-

ployed by different cloud tenants who supply untrusted code

or binaries. (3) Untrusted clients who send requests to the

edge services of one or more tenants. The goal of attackers is

to compromise security systems, exfiltrate user data, or dis-

rupt edge services. We assume an attacker has capabilities to

evade system security mechanisms by exploiting vulnerabil-

ities in the edge service binaries. We consider two general

attacker cases: malicious tenants and malicious clients.

Malicious tenant. A tenant could provide malicious or vul-

nerable services in order to affect the operation of services

run by other tenants. After initialization, a tenant’s services

are trusted only with the permissions given to them by the

system for specific resources, such as memory, communica-

tion endpoints or system calls. However, a service can make

arbitrary use of the permitted resources regardless of whether

they are shared by other services.

Malicious client. A client could try to tamper with other

clients’ traffic by exploiting a vulnerable service. Clients can

request any service or send arbitrary packets. After a client

successfully attacks a service, we assume it can access any

data or resources that are permitted to the controlled service.

EdgeOS seeks to grant resource access permissions to ser-

vices and enforce isolation among them in order to limit

the effects of malicious tenants and clients. In particular, the

system wants to maintain tenant-isolation (i.e., a malicious

service should not be able to disrupt services from other ten-

ants) and client-isolation (i.e., a malicious client that exploits

an instance of a service should not be able to affect other

clients). We do not attempt to prevent a malicious tenant’s

services from affecting its own clients, just as a normal cloud

provider does not try to validate client services.

Isolation model. EdgeOS provides a strong form of isola-

tion based on constraining both inter-tenant and inter-client

(running code for a specific tenant) interference. Tenants pro-

vide chains of FWPs, each of which executes as a separate,

preemptive thread, and protection domain (including page-

table-constrained memory). As such, FWPs access disjoint

sets of read/write memory, interact only with adjacent FWPs

in their chain using message passing, and receive propor-

tional execution time. The lack of shared resources (e.g., no

shared memory) and ambient authority (e.g., no shared filesys-

tem namespace) provide strong logical isolation. Preemptive



scheduling policies prevent CPU-based resource consump-

tion attacks. EdgeOS ensures that FWPs in a chain cannot

be bypassed, and that the output packets cannot be modified

by upstream FWPs. As such, FWP chains constitute a high-

performance implementation of assured pipelines [7].

We enable a chain of FWPs to processes client requests

– as opposed to requiring a tenant to provide a single FWP–

for multiple reasons: (1) FWPs at the start and end of the

chain can be required by the system and provide the likes of

firewalls and rate-limiting, (2) some applications are naturally

implemented in a separate address space, thus using multiple

FWPs to provide legacy support, and (3) it allows tenants to

more strongly isolate at-risk computations from those that are

more important (e.g. TLS termination).

EdgeOS’s strong isolation between FWPs ensures isolation

between tenants. When paired with fast FWP instantiation,

it provides per-client isolation. New connections addressed

to a tenant’s service can (optionally) be served by a separate

FWP chain, thus lifting the inter-FWP isolation to provide

both inter-tenant, and inter-client isolation.

2.2 Existing Isolation Options

In order to support extreme dense per-client isolation, we

propose that a protection domain should have the following

properties. 1) it is sealed [26] so both the binary and con-

figuration cannot be modified after initialization; 2) it has

minimal access to system APIs and resources; 3) it cannot

share any resource, such as memory, with other untrusted pro-

tection domains; 4) once a client’s computation is finished,

instead of reusing its protection domain – which would allow

compromises to impact future executions – it is re-initialized

to a safe state.

In contrast, current systems that use process pools or vir-

tualization do not provide this inter-instantiation isolation.

Existing solutions provide weaker isolation:

• UNIX processes are exposed to large system call interface

and TCB in the kernel. Even containers using more security

features, such as cgroups, namespaces, seccomp-bpf

and chroot, still maintain significant state (including sig-

nals, file descriptors, memory mappings) that increases at-

tack surfaces.

• Virtualization encapsulates a hardware abstraction along

with multiple enclosed processes and system state. Thus it

introduces an extra hardware-enforced isolation boundary.

Though research has optimized implementations [2,32], the

memory overhead, and startup latencies are not sufficient

for per-client isolation.

• Language techniques use software-based isolation, but ei-

ther don’t provide temporal isolation, instead executing

tenant computation non-preemptively [52] or using heavy-

weight language runtimes [22].

 0

 2000

 4000

 6000

 8000

 0  200  400  600  800  1000

100

101

102

103

104

105

106

107

N
e
tp

e
rf

 L
a
te

n
c
y
 (

u
s
)

M
e
m

c
a
c
h
e
d
 L

a
te

n
c
y
 (

u
s
)

#Processes

memcached
netperf-SC
netperf-MC

Figure 1: Round-trip latency of N netperf or memcached in-
stances. Compared with the 1ms round-trip of 5G networks,
netperf latencies represent a 2x/8x latency increase using one/six-
teen cores, while memcached exhibits a 1000x latency increase.

2.3 Multi-tenancy and Churn

Given the increasing number of stakeholders that can ben-

efit from edge cloud execution, supporting multi-tenant ex-

ecution is critical. Network slicing [1, 45, 49] is essential

to best utilize edge resources for 5G networking. The chal-

lenge [58] is to efficiently share the relatively constrained

resources at the edge (often between less than one and low

tens of racks [13,14]), while efficiently isolating tenants. Com-

plicating this is the dynamic behavior [43, 44] of these sys-

tems which requires adaptation to the environment’s inherent

churn.

Churn and isolation overheads. Unfortunately, even rela-

tively efficient mechanisms such as containers impose signifi-

cant overhead when new clients require isolated computation.

This is because those mechanisms rely on layers of abstraction

and management of a large number of namespaces.

Percentile Docker Firecracker fork() EdgeOS

50th 521 126 0.26 0.048

90th 574 129 5.8 0.054

The table above depicts the cost in milliseconds of leverag-

ing various isolation facilities; we measure the time to start a

minimal service and then fault in 8 pages of memory to show

the unpredictability of Linux’s Copy on Write (full details in

Section 5.2). Using docker start can take hundreds of mil-

liseconds due to the cost of initializing namespaces and setting

up Docker [10] metadata. Amazon’s Firecracker [2, 19] still

takes over one hundred milliseconds. Even Linux fork(),

which has a much lower cost than Docker, exhibits high vari-

ance, with the 90th percentile being over 20 times slower

than the median. In contrast, our EdgeOS platform improves

median start time by 5X compared to Linux, and has mini-

mal variability. Later we show we can improve EdgeOS by

another order of magnitude by maintaining a cache of fresh

services that can be started near instantaneously.

2.4 Latency and Throughput at Scale

Lightweight isolation mechanisms such as containers fa-

cilitate running large numbers of applications (e.g., hundreds

of Docker containers per server), but they cannot provide
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Figure 2: EdgeOS Control and Data Plane Architecture

performance predictability as the scale rises. This leads to

the second key challenge in edge infrastructures: predictable

performance, particularly latency, at large scale.

Scaling isolation facilities. Unfortunately, current infrastruc-

tures suffer poor performance not only under churn, but also

at high scale. Both VMs and containers see overheads due

to the expense of traversing the host’s software switch to

determine the appropriate destination to deliver incoming

data. Even prevalent and widespread OSes such as Linux

suffer from this issue. To evaluate the latency behavior of

Linux, we adjust the number of netperf servers sharing a

single core (netperf-SC) or spread across multiple cores

(netperf-MC), and the number of memcached instances

spread across multiple cores. A second, well provisioned

host transmits traffic to the test server over a 10 Gbps link.

Using multiple cores still cannot achieve ideal latency due to

poor scalability as shown in Figure 1. Real applications such

as memcached are quickly overwhelmed and can only sup-

port a hundred or fewer instances (full details in Section 5.6).

This illustrates the inability of existing OS isolation mecha-

nisms to provide fine grained performance isolation at high

scale. EdgeOS is designed to support isolation with both high

scalability and predictability.

3 Design

Figure 2 shows the overall EdgeOS architecture, with

trusted components having white lettering. The EdgeOS data

plane is composed of Memory Movement Accelerators (MMA)

that efficiently and securely copy data between services de-

ployed by tenants as Feather-Weight Processes (FWP), which

can be composed into chains to build complex services. The

EdgeOS control plane instantiates and schedules these com-

ponents and routes messages to them.

3.1 Design Principles

Our EdgeOS is designed under the guidance of widely

accepted secure system design principles [8, 35, 64].

Avoid shared resources (P1). Every shared resource may

open an attack channel [35]. EdgeOS avoids sharing of all

types of resources, such as memory, communication end-

points and system services to prevent malicious activities.

Mediated communication (P2). This principle states that

communication should be passed via a trusted component,

and rules out shared memory based communication. Within

EdgeOS, the kernel and MMA mediate all communication

initiated from untrusted services.

Least privilege (P3). This well-known principle requires ev-

ery component to have minimal privileges to limit damage

from a system compromise. However, current isolation mech-

anisms, such as containers or VMs, are usually running on top

of monolithic systems, whose kernel or hypervisor has full

privilege. EdgeOS applies this principle not only to untrusted

components, but also low-level system services, such as MMA

and scheduler.

3.2 Memory Movement Accelerators (MMA)

Copy-based communication. Existing high throughput sys-

tems [51, 52, 72] often eschew isolation and use shared mem-

ory to pass data among isolated services. In contrast, EdgeOS

eliminates shared memory between services (P1). A key Ed-

geOS design is that all communication between untrusted

services use data copying and are mediated by MMA (P2).

As long as memory copying is higher bandwidth than the

network line-rate, it is a viable form of data movement that

provides strong isolation. On our processor, memory through-

put is 472 Gb/s, and though networking throughput is ever-

increasing in the data-center, it is more limited on the edge.

Practically, in §5.1 (Figure 5(c)) we show that the MMA can

sustain throughput competitive with a middlebox framework

– that avoids copying by sharing packet memory – up to 54

Gb/s. For perspective, 5G cells provide on the order of be-

tween 2Gb/s [21] and 20Gb/s [39]. This design is counter to

long-standing networking subsystem guidance that dictates

that zero-copy is necessary [24, 66] – often at the price of

isolation, EdgeOS optimizes the MMA implementation and

treats it as a specialized processor (§4.2) to achieve the line-

rate. As a result, EdgeOS maintains strong isolation without

practically sacrificing performance.

Efficient data copying with the MMA. The MMA acts as a

software DMA engine to move message data between ser-

vices, and runs on one or more dedicated cores in order to

perform out-of-band data movement. The MMA retrieves mes-

sages from an upstream service’s message rings, copies them

and adds them into a downstream service’s message rings,

and alerts the scheduler that the destination service needs to

be activated to receive it. EdgeOS further separates memory

into a message pool that is used for communication, and local

memory for each service’s local state. This separation enables

memory allocations to be optimized for the purpose and use

of the memory (§4.1). MMA only has the access rights to copy

into, or from message pools (P3).

Network Gateways. In and Out gateways leverage

DPDK [11], run on dedicated cores1 and pull packets into

message pools with no kernel interactions. MMA then copies

1Note that current edge offerings include between 20-64 cores, and we
show (§5) that, in aggregate, EdgeOS is efficient despite specializing cores.



packets into the destination service, thus enabling strong pro-

tection among both (untrusted) edge services and (trusted)

system services.

3.3 Feather-Weight Processes (FWP)

A Feather-Weight Process (FWP) is a minimal abstrac-

tion wrapping only memory and a small set of simple kernel

resources. FWP achieves strong isolation by (1) capability-

based access control which minimizes access to the rest of the

system; (2) library-based services to avoid sharing of sensi-

tive information; (3) FWP caching that re-initializes a FWP’s

context before serving a new client.

Capability-based resource isolation. In EdgeOS design, ac-

cess to all resources relies on capability-based access con-

trol [9] using kernel-mediated references, removing any am-

bient authority [37] (P2, P3). These resources include local

memory, the message pool that is used to receive and send

data, and synchronous communication end-points to request

operations from system-level services. Capabilities to mem-

ory are enforced by hardware page-tables, while other capa-

bilities are protected by the kernel. Each FWP is encapsulated

within its own capability space, which restricts the granted

resource to only the allowed tenant. No memory is shared

between FWPs, instead MMA copies data between FWPs.

Library-based services. Notably absent in EdgeOS are de-

fault access to conventional shared OS services. Similar to

Unikernels [30, 31, 69], FWPs make use of library-based

implementations [18], thus enabling the inclusion of only

the application-required services without sharing with other

FWPs (P1). We have ported a TCP/IP networking stack and a

simple in-memory file-system to FWPs. The memory-based

file system is used to store transient and configuration data.

If global persistent state is required, then network-accessible

storage services can be used (similar to a serverless comput-

ing model). This decoupling enables a simplified and efficient

FWP execution environment to enable high density and line-

rate computation.

FWP Caching. A new client should not be allowed to see

old context accumulated from previous clients. Current prac-

tices either ignore this, such as process pools, or manually

terminate and restart the service [3, 5], which repeatedly in-

curs unnecessary initialization overhead. EdgeOS employs an

FWP checkpoint cache, that both avoids reusing possibly com-

promised state of previous executions and avoids redundant

initialization computations. In doing so, EdgeOS guarantee

that (1) an FWP is sealed so it cannot be modified after

checkpointing; (2) an FWP is restored to the cached post-

initialization state. Thus its memory is placed into a known

and safe state, ensuring the integrity of future FWP instances.

Checkpointing details are described in §4.3.

FWP Chains. To provide more complex functionality, FWPs

can be arranged into chains, thus the entire chain can be effi-

ciently managed as a whole. A FWP chain composes multiple

checkpointed FWPs and are maintained in a FWP-chain cache
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Figure 3: Lifecycle of a FWP-chain: Dotted lines indicate FWP
manager operations conducted once to load and then checkpoint a
FWP-chain, or to reclaim the FWP’s resources when memory pres-
sure exists. Dashed lines indicate operations to re-initialize termi-
nated FWP-chains for future use. Solid lines are data-path operations
performed by on the critical path.

that caches entire chains of FWPs, their interconnections, and

their message pool. MMA copies data between adjacent FWPs

within the same chain, avoiding shared memory.

3.4 EdgeOS Control Plane

The EdgeOS Control Plane is composed of: (1) the Ed-

geOS Controller that maps incoming flows to FWP chains,

(2) the FWP Manager that controls the lifecycle of FWPs and

optimizes their startup, and (3) the Scheduler that determines

which FWP to run on each core and activates them in response

to incoming messages.

Flow matching with the EdgeOS Controller. When new

requests arrive from connected client devices, they need to be

routed to the appropriate FWP chain. The EdgeOS Controller

allows tenants to define FWP chains and the packet filtering

rules that specify what traffic should be routed to them. These

rules are pushed to the Net-In data plane component. Net-In

applies rules similar to SDN match-action rules: packets are

split into flows based on the header n-tuple (e.g. src/dest IP

and port) and a rule is found that matches the flow. The rules

indicate the FWP chain that will process that flow.2 Since

our focus is on fine-grained isolation and high scale, a rule

can indicate whether all flows that match the rule should be

handled by a single chain, or if each client flow should be

given a dynamically started instance of the chain.

FWP Manager. Figure 3 illustrates the lifecycle controlled

by the FWP Manager. Similar to a Linux process, an FWP

starts as an object file, which must be loaded into memory.

Once execution begins, FWPs perform some initialization

routines, and are checkpointed to a Template. Then multiple

identical copies are forked off the Template and put into FWP

cache. As new clients arrive, they are paired with correspond-

ing FWP-chains from the cache. The selected FWPs will be

Activated, allowing them to process messages or transition

to the Blocked state, before eventually Terminating when no

longer needed. When a FWP chain terminates, the Manager

reuses the chain by Restoring it to the post-initialization state

and puts it back into the FWP-chain cache. If there is memory

pressure, cached FWP templates and chains are Reclaimed.

2Our implementation currently assumes flow rules are statically preconfig-
ured, but this could be extended to support on-demand flow lookups similar
to SDN controllers, with a northbound interface to application logic that
would assign a rule dynamically to each flow.
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Scheduling and inter-FWP coordination. Once a set of

FWPs are activated, they are distributed across cores, and

partitioned scheduling (i.e. without task migrations) multi-

plexes the core’s processing time.

Traditional systems often use shared data-structures and

Inter-Processor Interrupts (IPIs) for scheduling notification.

For example, Linux activates threads by accessing that

thread’s data-structure directly to see if it is already awake,

and if not, an IPI is sent. The resulting cache-coherency traffic

and IPI overheads, can be significant, especially if used for

message notifications arriving over a network at line rate. Mo-

tivated by these overheads, NFV platforms based on DPDK

such as OpenNetVM [72] use active polling for communica-

tion between threads on different cores, thus avoiding block-

ing. However, as the number of processes (“network func-

tions” in OpenNetVM) grows beyond the number of cores,

spin-based event notification is inefficient.

All inter-scheduler coordination in EdgeOS is via message

passing, avoiding shared memory synchronization. When a

FWP-chain is activated, or when a message is sent to an FWP,

the MMA notifies the scheduler of the activation. On the other

hand, a FWP will be blocked after processing all of its mes-

sages. FWPs avoid spinning to ensure efficient multi-tenant

computation. We currently use a simple and efficient preemp-

tive, fixed-priority, round-robin scheduling policy. This aims

to provide temporal isolation between untrusting FWP chains

which prevents them from monopolizing the CPU, and from

interfering with the progress of other tenants’ FWPs.

Timeline Summary. Figure 4 shows the complete timeline

for processing a packet. (1) A packet reception at the Net-In

gateway causes a flow lookup to decide which FWP chain

should process the packet. (2) If there is a miss, the FWP

Manager spawns a FWP chain from its cache. (3) MMA copies

the packet and (4) adds it to the first FWP’s ring of the desti-

nation FWP chain. (5) MMA messages the scheduler on the

FWP chain’s core to activate it. (6) The FWP chain processes

the packet and (7) the last FWP in the chain asks the output

gateway to DMA the packet out the NIC.

3.5 Isolation Analysis

We summarize how EdgeOS achieves the isolation re-

quirements listed in §1 based on our design principles. Ed-

geOS executes on top of a micro-kernel, with a smaller TCB

than monolithic systems (on the order of 10K lines of code).

FWPs access system resources through a capability-based

access-control system provided by the kernel [67]. Capabil-

ities protect and control access to kernel resources includ-

ing synchronous and asynchronous IPC end-points, threads,

time [20], and memory. The capability model is similar to

that in seL4 [17], and relies on user-level retyping of un-

typed memory into both kernel resources and virtual memory.

The most notable difference between EdgeOS’s capability

model and seL4’s is that EdgeOS doesn’t allow IPC-based

delegation, instead relying on a user-level component with

capability-based access to a FWP’s capability-table to copy

capabilities (thus access to kernel resources) into that FWP.

EdgeOS leverages the kernel’s capability system to tightly

constrain FWP’s access to system resources. Each FWP has

access to only its own memory and to IPC endpoints to the

scheduler, and to the FWP manager to block awaiting further

execution, and expand their heap, respectively.

Trust model: §2.1 discusses the threats from untrusted tenant

code, and from clients that can compromise that tenant code.

As such, we assume that any resources available to an FWP

will be used, where possible, to escalate privilege, and that all

FWP system interfaces will be comparably stressed.

EdgeOS is implemented as a set of trusted, user-level com-

ponents that have access to various FWP resources. The MMA

has shared memory access to each FWP’s message pool, and

is trusted to properly move messages between adjacent FWPs,

to and from the network gateways, and to notify schedulers

of FWP activation. Similarly, the network gateways (using

DPDK) are trusted to properly interface with the NIC and

the MMA and to properly implement a tenant’s flow matching

rules. Per-core schedulers [54] have the ability to dispatch

FWP threads, and are trusted to properly preemptively sched-

ule FWPs and coordinate with the MMA to properly activate

them. The FWP manager is relied on to quickly and correctly

create new FWP instances, perform capability delegations

into the FWP, maintain the FWP cache, and dynamically ex-

pand FWP heaps. The FWP manager delegates resources

to FWP chains such that all readable/writable resources are

partitioned per-FWP. Thus, each chain is mutually isolated,

and when a chain is assigned to a client, clients are mutu-

ally isolated. Finally, the kernel is depended on to maintain

the capability-based access model that constrains the set of

resources available to each FWP.

FWP isolation: FWP memory is initially allocated by the

FWP manager, and is of three types: (1) shared executable

and read-only data derived from a tenant’s FWP’s image,

(2) read-write memory in the global data segment and heap

that is not shared among FWPs, and (3) message pools that

are shared only with the MMA. Finally, each FWP has access

to IPC end-points to request heap expansion, and to await the

next message’s arrival. Messages are sent downstream, and

received from upstream FWPs using message pool, thus inter-

facing with the MMA using only simple wait-free ring buffers.

The MMA maintains associations between an upstream FWP’s

message pool and the downstream FWP, thus only allowing

data-flow within a chain. EdgeOS’s design ensures that a



malicious FWP – or a compromised FWP – will not be able

to intercept data outside of the FWP’s chain, nor impact the

integrity of correct services.

Inter-FWP temporal isolation is enforced by preemptive

scheduling. Each FWP executes in a separate thread con-

trolled by per-core, round-robin scheduling logic. In contrast,

many of the most efficient language-based techniques (e.g.,

NetBricks [52]) cannot prevent a buggy or malicious tenant’s

infinite loop from preventing progress for all tenants.

Inter-client isolation: Each client is served by a separate

FWP (chain), the FWP (chain) is re-initialized before serv-

ing each new client, and when created, each FWP (chain) is

delegated disjoint read/write resources by the FWP manager.

Thus, a malicious client cannot impact the execution of future

clients. In contrast, VM techniques often create a VM per-

tenant [2], which executes multiple clients, thus potentially

exposing clients to past compromises. Even webservers are

typically architected to service multiple clients within a single

protection domain.

When inter-client sharing is required by a tenant (e.g., to

implement a shared cache), FWP chains can either access

network-accessible storage, or use Net-In gateway rules that

send new clients to an existing FWP chain storing common

state (§3.4). The former is similar to the stateless design

of many serverless and microservice applications; in fact,

FWPs provide more flexibility since per-user state can be

maintained across multiple requests if desired. In the latter

case, isolation is traded for sharing, which is evaluated in §5.6.

More complex routing rules that cluster specific sets of clients

into different, potentially existing, FWP chains are beyond

the scope of this paper.

Per-client isolation in EdgeOS is, in many ways, most sim-

ilar to systems to provide Distributed Information Flow Con-

trol (DIFC) [40]. Such systems track information as it flows

(via IPC and other interactions) between processes, and de-

fine policies to determine when that flow is allowed. When

a single process is needed in two conflicting information

flows, a common strategy [15, 41, 62, 71] is to create a new

instance per flow. This is similar in mechanism and moti-

vation to the per-client FWP chain instantiation in EdgeOS.

Importantly, EdgeOS focuses on providing instantiation of

full FWP chains, low overhead (an order of magnitude less

than Linux fork), and line-rate performance. Despite strong

FWP isolation, EdgeOS achieves per-packet overheads on

the order of dedicated middlebox infrastructures that do not

provide comparable isolation.

4 Implementation

We implemented EdgeOS in Composite (composite.

seas.gwu.edu), an open source µ-kernel that externalizes

traditionally core kernel features into user-level compo-

nents that define the resource management and isolation

policies [67]. In Composite, components interact through

highly-optimized Inter-Process Communication (IPC) to

leverage system logic and resources. Composite is based on

a capability-based protection model [17, 61] that controls

component access to kernel resources. The kernel includes

no scheduling policies, instead implementing schedulers at

user-level [54]. The Composite kernel scales well to multi-

ple cores as it has no locks and is designed entirely around

store-free common-paths, wait-free data-structures, and qui-

escence [67]. MMA can be implemented in other OSes such

as Linux. In EdgeOS we pair it with the FWP abstraction to

provide fine-grained isolation and adaptability to churn.

EdgeOS prototype consists of the MMA, FWP management,

DPDK-based network access and schedulers. In total, Ed-

geOS adds fewer than 6000 lines of code. We plan to release

our code and experiment templates for repeatable research.

4.1 Message Pool Management

Memory management integration into ring-buffers.

Each FWP’s message pool is associated with two ring buffers

that track both how to transmit and receive messages, and

the allocation and deallocation of messages. EdgeOS ob-

serves that general purpose memory allocation facilities

(malloc/free) can have significant overhead. Thus, we in-

tegrate memory with message management by tracking free

memory in rings.

A reception ring buffer contains a set of references to mes-

sage slots into which incoming data can be copied, and the

transmission ring buffer contains references to messages to

move downstream in the FWP chain. The MMA orchestrates

data movement between different FWP’s packet memory re-

gions, thus acting as a software DMA accelerator.

Message pools are managed by FWPs as a span of MTU-

sized message slots, and unlike traditional NIC DMA ring

buffers, the ring buffers include an entry for each message

slot. Ring entries that have been transmitted by an FWP, and

have been copied by the MMA are marked as free, and are

used for packet allocations. FWPs must maintain a sufficient

number of messages in reception rings to buffer messages that

queue up due to the system’s scheduling latencies. Thus, after

FWPs finish processing pending messages, they move batches

of freed messages from the transmit ring into the reception

ring. This avoids malloc on the fast path, as message liveness

is managed indirectly through the ring buffers.

Message pools and isolation. The ring buffer design decou-

ples the message pool from the meta-data to coordinate the

data movement and liveness between FWPs and the MMA.

This avoids lock-based protection of the rings, instead relying

on wait-free mechanisms. This is necessary to avoid the high

costs of synchronization, and ensure progress of the MMA in

spite of possibly malicious FWPs.

4.2 Memory Movement Accelerator

Our initial experiments showed that naively copying pack-

ets in a DPDK-based NFV pipeline decreased throughput



by more than 50%. However, a MMA core has a through-

put of around 54 Gb/s on our hardware, which is sufficient

for line-rate. For networks that require a higher throughput,

more cores can be specialized as MMAs. In the limit, MMA’s

throughput is bounded by the chip’s memory bandwidth,

which for our processor is 472 Gb/s. By using the parallelism

of the underlying processor and specializing cores to run the

MMA, we achieve both isolation and high throughput by taking

message movement out of the critical path.

The MMA has read-write access to all message pools. It

maintains a mapping between both pairs of transmit and re-

ceive ring buffers for subsequent FWPs in a chain, and contin-

uously iterates through all such pairs, transferring messages

when it finds a transmitted message. The MMA provides two

essential services: data-movement by copying transmitted

messages, and event notification of the receiving FWPs. The

MMA’s FWP event notification is efficient as it simply sends

a message to the scheduler controlling the target FWP’s, and

relies on the scheduler to asynchronously process events.

MMA optimizations. As the MMA is on the data-path of all

FWP interactions, including message reception, it must be

able to move messages at faster than line rate. The data-

structures linking transmit and reception rings are laid out in

an array to leverage the processor’s prefetcher as the MMA it-

erates over them. The initial implementation of the operations

on the ring buffers were straight-forward, but cache-coherency

traffic, possibly a cache-line transferred for each ring entry,

hurt throughput. To address this, we optimize the MMA:

• Double-cache-line (128B) caches are added to both the

enqueue and dequeue operations. These caches are in local

memory outside of the ring, thus their modifications avoid

coherency traffic. When retrieving to the ring, a batch is

copied into the cache, and when transmitting messages are

queued in the cache, and batch copied into the ring. To

ensure message delivery, the cache is flushed by an FWP

before it blocks.

• These caches enable messages to be transferred in batches.

We use explicit software prefetch instructions to load all ref-

erenced messages in the cache to avoid CPU cache misses

on message processing.

• Messages are efficiently addressed and copied as the MMA

has shared memory access to all message pools. To main-

tain protection, the MMA validates that FWP messages are

within a valid message pool.

4.3 Optimized FWP checkpointing

EdgeOS caches the images of chains of FWP binaries so

they are ready for prompt activation. These ready-to-execute

images are asynchronously prepared, thus moving the over-

head for FWP preparation off the fast-path. The cached FWP’s

state is identical to the initialized state of a ready-to-execute

FWP.

We utilize a few optimizations to efficiently generate post-

initialization FWP snapshots: (1) the post-initialization check-

point of the FWP-chain is laid out contiguously in memory

so that chain re-initialization is as close to memcpy / memset

overheads (for which we use the musl libc, unoptimized ver-

sions), (2) we do not eagerly reclaim – and thus later re-

allocate – heap memory from terminated FWPs, instead only

zeroing it out to maintain confidentiality, and using it to sat-

isfy future heap allocations, (3) we reuse the threads active in

each FWP by only resetting their registers to the appropriate

post-initialization state, which avoids the overhead of thread

destruction and allocation, and (4) only if there is memory

pressure do we reclaim first spare FWP heap memory, then

cached FWPs. Re-initialized FWPs maintain zero state from

their previous execution: the stack, heap, and writable data

sections are reset to the initial state. These optimizations cul-

minate in a system that can handle exceedingly high churn

and scalability: FWP chain initialization is dominated by

memcpy/memset overheads, and new client chain activation

takes in the low 10s of µ-seconds.

5 Evaluation

All experiments are run on CloudLab Wisconsin c220g1

series nodes [57]. These are 2 socket, 8 core, Intel(R) Xeon(R)

CPU E5-2630 v3 @ 2.40GHz processors with 128GB ECC

Memory. Note that these systems have fewer cores than cur-

rent edge offerings, thus pressuring EdgeOS’s design that

dedicates cores to different functions. Systems are connected

via Dual-port Intel X520-DA2 10Gb NIC (PCIe v3.0, 8 lanes).

5.1 Latency and Throughput

We first evaluate the latency and performance predictability

of EdgeOS compared to other high performance networking

platforms. Figure 5(a) shows the response time distribution (in

microseconds) for an ICMP ping response Click [28] element

implemented as either: a DPDK process, an OpenNetVM

NF (ONVM), a standard linux process with kernel-based IO,

a ClickOS NF in a Xen VM, or an FWP in EdgeOS. The

results show that EdgeOS significantly outperforms all of

these techniques (by up to 3.8X in average latency), except

for DPDK. DPDK is slightly better because it can run only

a single service at a time and thus does not need to copy

packets from the initial receive DMA ring to a separate pool.

In contrast, EdgeOS provides a platform to potentially run

thousands of distinct services, and thus needs to offer stronger

isolation via copying.

Figure 5(b) shows the maximum throughput of different ap-

proaches when forwarding traffic from pktgen, a high speed

packet generator. EdgeOS again provides better performance

than ClickOS, while offering stronger isolation than DPDK

and ONVM, which rely on globally shared memory pools for

zero-copy IO.

Next we compare the performance of EdgeOS communica-

tion with ONVM. We run a chain of NFs on the same core that

each forward small (64B) or big (1024B) packets, thus both



 0

 0.2

 0.4

 0.6

 0.8

 1

 40  80  120  160  200

C
u
m

u
la

ti
v
e
 P

ro
b

(a) Response Time (us)

DPDK
EOS

ONVM
Linux

ClickOS

 0

 2

 4

 6

 8

 10

64 128 256 512 1024

T
h
ro

u
g
h
p
u
t(

G
b
p
s
)

(b) Packet Size (Bytes)

DPDK ClickOS ONVM EOS

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6

T
h
ro

u
g
h
p
u
t(

G
b
p
s
)

(c) Chain Length

ONVM-64 EOS-64        ONVM-1024          EOS-1024

Figure 5: (a) EdgeOS provides substantially better latency, and reduced jitter compared to Linux processes and NFV platforms like OpenNetVM
and ClickOS. (b) Throughput of each system with different packets sizes. (c) EdgeOS provides isolation and adds negligible overheads
compared to OpenNetVM (no isolation) for different chain length for messages of size 64 and 1024 bytes.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

Docker
start

Fire
cracker

fork
+exec

fork
+faults

EOS
create

EOS
activate

S
ta

rt
 T

im
e
 (

m
s
)

(a)

521
126

1.058
0.26

0.048
0.0062

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1  1  10  100  1000  10000

C
u
m

u
la

ti
v
e
 P

ro
b

(b) Activation Time (ms)

EOS         
EOS-Chain      

fork        
fork+exec       
Firecracker      

Docker        

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  500  1000 1500 2000

Docker (green)
Firecracker (orange)

fork+exec (blue)
EOS (red)

A
c
ti

v
a
ti

o
n
 T

im
e
 (

m
s
)

(c) #Iteration

Figure 6: EdgeOS provides orders of magnitude better startup time than other approaches and does not suffer from scalability problems when
starting larger numbers of FWPs.

systems have context switch overhead by passing a packet

to the next NF. In addition, EdgeOS has copying overhead

from the MMA to enforce isolation. The results in Figure 5(c),

show that as the chain length increases, the throughput of 64B

packet drops for both EdgeOS and ONVM. The main over-

head of EdgeOS is data copying, while the overhead of Linux

context switches and scheduling dominates ONVM. When

the chain length is smaller than 3, the overhead of copying

is less than 8%, and EdgeOS outperforms ONVM when the

chain is longer as the Linux system overheads increase. The

throughput with 1024B packets maintains line rate for both

systems when the chain length is smaller than 6, at which

point EdgeOS sees a throughput decrease. Even at length 6,

the MMA is able to maintain an aggregate of 54 Gb/s.

5.2 Startup Time

FWP Initialization and Activation. In Linux, initializing a

process involves calling fork (and possibly execve). For

Docker containers, a docker run command is similar, but

includes additional system calls to configure namespaces and

maintain container metadata. For Firecracker, we use the rec-

ommended “hello” image and use 1 vCPU and 128 MiB

RAM. In order to optimize the fast path of readying a cached

FWP, EdgeOS separates out creation from activation. For

EdgeOS, creation involves transitioning from the Object File

to Cached state in Figure 3, including setting up page tables,

capability tables, and thread creation. We record the start time

for 10,000 iterations of starting a container, VM, process, or

FWP and report the median in Figure 6 (a). Note the log

scale. We use median time values as Container creation cost

increases slowly over time so the mean is skewed by these

outliers. We compare against two variants of Linux processes:

"fork + exec" loads a different binary whereas "fork + faults"

mimics loading the service’s working set by issuing writes

to eight different pages to trigger page faults (the size of the

minimal FWP). These approaches are 5-20X slower than the

comparable "EOS create" approach (dashed lines in Figure 3).

Once an FWP has been created, EdgeOS keeps copies

of it in a cache which can be quickly activated on demand

(solid lines in Figure 3). Cached activation improves EdgeOS

performance by another order of magnitude, allowing new

processing entities to be instantiated in 6.2 microseconds.

Figure 6(b) presents a CDF of these approaches, including

the activation cost for a full chain of 10 isolated FWPs, which

remains an order of magnitude faster than fork+exec.

FWP Scalability and Middlebox Computation. Contain-

ers and VMs suffer from poor scalability: as the number of

instances rise, the start time increases [32]. In Figure 6(c) we

show the time to start a new container, create a Firecracker

VM, exec a process, and activate an FWP, when up to 2200

are started incrementally. The Container case gradually drifts

upward before hitting a step after 2000 containers (note log-

scale) – the last container takes 1.368 seconds versus 0.467

seconds for the first. FWPs provides nearly constant start time

regardless of scale. EdgeOS has a few outlier points (11 out

of 15K measurements are at 2ms), which we believe to be

Non-Maskable Interrupts, or a bug in our scheduling logic.

5.3 Isolation

Just in Time Service Instantiation. To evaluate the impact

of client churn in edge environments, we measure client re-

sponse time for a ping that creates a new FWP. Clients send

requests at a configurable interval, and we assume that each

new client requires a new, isolated FWP. The new FWP re-
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ceives the incoming packet, produces a reply, and then termi-

nates, representing a worst case churn scenario. Figure 7(a)

shows a response time CDF for EdgeOS under different

client arrival patterns. The results show that even when a

new client arrives every millisecond, 90% of requests are ser-

viced within 50 microseconds This experiment mimics that

in LightVM [32], and although we have not been able to suc-

cessfully run the LightVM software on our testbed, we note

that their paper produced a 90th percentile response time of

20 milliseconds (more than 400X worse) with 10ms client

arrivals. The EdgeOS performance advantage comes from

our extremely lightweight FWP abstraction and our template

cache that allows nearly instant instantiation.

Multi-Tenancy and Customer Isolation. An important job

of edge-cloud systems is to act as a middlebox to monitor

traffic close to the source. Figure 7(b) depicts the processing

latency of a middlebox deployed between netperf client

and server machines for an increasing number of concurrent

clients. We use three nodes, two running netperf clients

and servers, and the third running EdgeOS or ONVM in the

middle. The systems run either a single firewall to filter flows

or a 2 FWP chain of firewall plus monitor, all implemented

in Click, to further maintain statistics about flows. Each cus-

tomer is serviced by its own “personal firewall” or chain,

thus preventing malicious clients interfering with others. We

measure the middlebox latency overhead (i.e., the added cost

versus direct client/server connections from Figure 1) as we

increase the number of clients, and thus number of FWPs

(EdgeOS) and Network Functions (NFs in ONVM).

Though ONVM is a highly optimized middlebox infras-

tructure, it relies on containers and expensive coordination

mechanisms between NFs and the management layer. Be-

cause of this, ONVM cannot scale past around 820 containers

or 410 chains, and the added latency rises quickly with each

new client. FWPs enable the system to scale past 2000 clients

with an average increase in the latency of only around 0.3µs

per additional client. Chaining in EdgeOS adds negligible

latency overhead thanks to efficient FWP scheduling and acti-

vations, while ONVM sees an increasing gap since it relies

on Linux’s more heavyweight futexes.

5.4 TLS Termination

For our first edge cloud use case, we consider the deploy-

ment of edge-based TLS termination proxies, such as for a

CDN serving https traffic or for IoT devices sending en-

crypted data streams. This requires an edge end-point for

TCP connections, a TLS handshake to share public keys, and

continued encryption/decryption of transferred contents. As

the majority of web traffic is over https [59], TLS implemen-

tations are a high-priority target for compromises, and have a

history of high-impact vulnerabilities, e.g., Heartbleed [12].

Therefore, instead of sharing one https end-point among

many clients, we instantiate an isolated TLS FWP for each

client. Toward this, we ported axtls (axtls.sourceforge.

net/) (version 2.1.4), which includes a lightweight https-

based web proxy optimized for embedded systems, and the

lwip (savannah.nongnu.org/projects/lwip/) TCP/IP

networking stack (version 2.1.2) to EdgeOS.

In our experiment we use a single cloudlab node as the

edge server, and use five additional nodes to drive the client

workload. We style this experiment after the setup in [32],

and request zero-length files hosted at the proxy (headers

are still encrypted). Each client uses ab (version 2.4.39) and

keep-alive sessions to make a series of requests over a TLS-

encrypted session. We modified ab by adding a nanosleep

to rate limit each client to 1000 requests per second. We

disable Nagle’s Algorithm for these experiments since it leads

to very low throughput and low network utilization due to

an adversarial interaction with delayed ACK support. For

fairness, axtls on Linux stores files in a ramdisk.

Figure 7(c) depicts the results of running an increasing

number of clients making https requests. Both Linux and

EdgeOS saturate the CPU at around 350 and 700 clients

and reach 297K and 668K requests per second, respectively.

Similarly, EdgeOS achieves around three times lower 99th

percentile latency than axtls, and has lower variability across

clients compared to Linux as shown by the error bars.

In addition to fast FWP instantiation, and efficient com-

munication, the following FWP optimizations are significant:

(1) the FWP abstraction focuses on communication with a sin-

gle client, it avoids event multiplexing through select and

the associated overhead, and (2) similarly, the share-nothing

nature of the FWP abstraction enables synchronization-free
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Figure 9: Multiple memcached instances (one per tenant) on 16 cores.

networking using the simple lwip stack (in contrast to some

unikernels that cannot push lwip to Linux-level through-

put [32]). Though EdgeOS provides significantly stronger

isolation (a TLS instance per client), the FWP model still

enables efficient, predictable scalability.

5.5 Edge Inference

Edge based neural network inference enables resource con-

strained embedded systems to offload computationally-heavy

work such as live image recognition. For our second use case

we port the CMSIS NN Library (version 1.0.0) neural network

inference library to EdgeOS. We use the example CIFAR-10

configuration which takes as input a 32x32 pixel color image

which classifies to number 0-9. We focus on providing each

tenant with isolated inference services. Thus, we compare an

EdgeOS CMSIS NN FWP-per-client against a simple Linux

server that forks a process for each client.

Linux Clients EdgeOS Clients
100 500 100 500

Mean latency (ms) 13.8 69.2 14.6 70.1
99th percentile (ms) 25.4 135 14.8 71.3

We utilize a PowerEdge R740 server with two 24-core Intel

Xeon 8160 sockets that represents the Amazon and HPE edge

offerings. We use either 100 or 500 clients (separate columns),

each requesting 500 inferences. This application is particu-

larly CPU-heavy (each inference taking around 6ms), thus

penalizing EdgeOS’ design that specializes cores, i.e., Linux

can use all cores on the system for inference, whereas Ed-

geOS sets aside 4 cores for MMA and control services.Despite

this, EdgeOS has only slightly lower throughput than Linux,

losing 2.5% to 4.6%. However, the simpler FWP runtime in

EdgeOS minimizes scheduling interference, reducing latency

jitter. Together with EdgeOS’s more efficient activation, this

yields significant decreases in tail latency – 42% and 47% at

100 and 500 clients, respectively.

5.6 Memcached

Finally, we evaluate how EdgeOS can provide a platform

for low latency endpoint applications that don’t require rapid

instantiation. We implement memcached as an FWP that uses

UDP for requests. We mimic a scenario where one or more

edge tenants store data, each with many clients making re-

quests. Isolating these tenants from each other is necessary as

they should not be able to access (maliciously or not), other

tenant’s cached data. The EdgeOS controller is used to map

incoming requests either to a single memcached FWP (e.g.,

representing a typical edge cloud data cache) or one FWP

per tenant (e.g., representing data stores for different sets of

edge-connected IoT devices). We compare EdgeOS against

Linux, with a single, or multiple memcached instances. Our

workload uses 135 byte value sizes and a 95% get, 5% set

request mix generated by the mcblaster client as in [46]. We

use multiple 16-core client machines, each running mcblaster

processes to ensure the client will not be a bottleneck.

Figure 8 shows a single memcached instance while Figure 9

shows a variant number of instances, representing different

edge-cloud tenants. We report the aggregate throughput across

all requests, the average latency, and a CDF of the latency

(with 16K or 128K clients) to understand the tail. The single

instance focuses on the data-path efficiency of the system,

while the multi-instance evaluates each system’s scalability to

an increasing number of tenants on the limited edge hardware.

The efficiency of both systems is seen in their aggregate

throughput. EdgeOS processes over 5x the throughput for a

single instance, and can scale more gracefully up to 800 in-

stances whereas Linux handles up to 400. EdgeOS’ response

time for a single memcached instance is substantially lower

than Linux: it handles 8X the client request rate before seeing

an increase in latency. Since Linux is not able to keep up, it

drops a large number of requests, e.g., 5.2% at a 320K req/sec

client rate. In contrast, EdgeOS does not see any requests

drops at a 1.2M req/sec client rate. For multiple instances,



Linux has a response time of nearly 1 second, whereas Ed-

geOS has an average latency below 1 millisecond for up to

600 memcached instances. From the latency CDF, we ob-

serve that even with only 100 memcached instances, Linux

has much higher tail latency than EdgeOS, and that with 800

instances Linux has more than three orders of magnitude

worse tail latency. These latency metrics ignore dropped re-

quests – with 800 instances, EdgeOS drops 13% of requests,

whereas Linux drops 66%.

6 Related Work

Multi-tenant isolation. Significant research addresses isola-

tion in a multi-tenancy environment. Bolted [38] presented an

architecture for a bare metal cloud supporting security sensi-

tive tenants. PSI [70] enables fine-grained and dynamic secu-

rity postures for different network devices by assigning each

device an NF. Denali [68] separates the protection provided

by a Virtual Machine Manager (VMM) from the abstractions

within a VM, and enables lightweight VM contexts. Multi-

tenancy virtual switch designs are proposed in [60, 64]. In

contrast, EdgeOS is motivated by the potentially enormous

churn and large-scale isolation requirements of the edge cloud,

providing service to transient mobile and IoT devices. For

isolated edge computation instantiation, FWP compares fa-

vorably to forking of minimal Linux processes (two orders

of magnitude faster start-time) which is the lower-bound for

many such techniques. Re-initializing FWPs to safe states is

partially motivated by ChaosMonkey [3, 5].

Lightweight isolation. Wedges [6], LWC [29], and Space-

JMP [16] expand the UNIX interface to include lightweight fa-

cilities for controlling and changing protection domains. Simi-

larly, Dune [4] uses hardware virtualization support to provide

user-level control over page-tables, and both dIPC [65] and

Skybridge [36] use hardware support to bypass the kernel dur-

ing inter-protection domain communication. Several projects

have increased the efficiency of containers. Cntr [63] includes

only the application-specific context in a container, while

SOCK [48] specializes the container to use efficient kernel

operations, and uses a Zygote mechanism paired with a cache

to accelerate container creation for stateless computations. Ed-

geOS targets at abstractions to support immense churn rates,

efficient communication with strong isolation via the MMA

and a narrow system attack surface. To efficiently use the

limited resources in the edge cloud, EdgeOS leverages this

support to scale to more than two thousand FWPs in less than

1GB of RAM while maintaining line-rate communication.

Other isolation mechanisms. DMA shadowing [33] utilizes

extra memory copies for DMA buffer to provide full IOMMU

protection. DAMN [34] introduces DMA-aware packet mem-

ory allocator to achieve efficient IOMMU protection. MMA

also uses data-copying to avoid shared memory communica-

tion between untrusted FWPs. LXDs [42] runs isolated kernel

subsystems on dedicated cores. EdgeOS achieves similar iso-

lation with the micro-kernel approach. EdgeOS implements

its system-level services in user-level, and further spreads

them to different cores.

New hardware features are used to enhance memory iso-

lation, such as Intel MPK [25, 53] and SGX [50, 56]. They

are complementary to EdgeOS. Language techniques such as

NetBricks [52] implement network processing functions in

a memory-safe language. These techniques rely on software

isolation within a single thread. Without multiplexing the

CPU among untrusted FWP chains via preemptive schedul-

ing, temporal isolation is challenging. EdgeOS effectively

uses the MMA to maintain memory safety, but also provides

temporal isolation by executing all FWPs in separate threads

that are preemptively scheduled. We also support the direct

execution of legacy code modulo the confines of FWP APIs.

7 Conclusions

The increasing prevalence of mobile computations and the

Internet of Things requires both scalable isolation facilities for

multi-tenancy in the edge, and the agility to handle high churn.

This paper has described an optimized copy-based MMA ar-

chitecture that provides strong mutual isolation without per-

formance penalties. We introduced FWP for scalable isolation

that is paired with a cache of post-initialization checkpointed

FWP-chains to provide microsecond scale activation times

for high churn.

Our evaluation shows EdgeOS substantially improves per-

formance for a wide range of applications from network mid-

dleboxes to endpoint services. We show that EdgeOS provides

more than a 3.8X reduction in ping latency and more than 2X

throughput increase compared to ClickOS – a system that also

provides isolated computation – for middlebox computations.

More importantly, EdgeOS can create FWPs for client com-

putation in 25-50 microseconds, even when they are created

every millisecond, and can scale to over 2000 FWPs while

maintaining low latency, even with a very limited amount

of memory. For edge applications like memcached, EdgeOS

has more than three orders of magnitude decreases in latency

when running over 300 server instances simultaneously, and

even CPU-intensive TLS termination shows a factor of three

tail latency decrease, all while maintaining strong isolation.

We believe that EdgeOS paves the way for closely integrating

the edge cloud into – and augmenting the capabilities of – the

increasing prevalence of mobile and embedded devices.
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