Network Entitlement: Contract-based Network Sharing with
Agility and SLO Guarantees

Satyajeet Singh Ahuja, Vinayak Dangui, Kirtesh Patil, Manikandan Somasundaram, Varun Gupta,
Mario Sanchez, Guanqing Yan, Max Noormohammadpour, Alaleh Razmjoo, Grace Smith, Hao
Zhong, Abhinav Triguna, Soshant Bali, Yuxiang Xiang, Yilun Chen, Prabhakaran Ganesan, Mikel

Jimenez Fernandez, Petr Lapukhov, Guyue Liu*, Ying Zhang
*New York University Shanghai

Meta Platforms, Inc.

ABSTRACT

This paper presents Meta’s Production Wide Area Network (WAN)
Entitlement solution used by thousands of Meta’s services to share
the network safely and efficiently. We first introduce the Network
Entitlement problem, i.e., how to share WAN bandwidth across ser-
vices with flexibility and SLO guarantees. We present a new abstrac-
tion entitlement contract, which is stable, simple, and operationally
friendly. The contract defines services’ network quota and is set up
between the network team and services teams to govern their obli-
gations. Our framework includes two key parts: (1) an entitlement
granting system that establishes an agile contract while achieving
network efficiency and meeting long-term SLO guarantees, and (2) a
large-scale distributed run-time enforcement system that enforces the
contract on the production traffic. We demonstrate its effectiveness
through extensive simulations and real-world end-to-end tests. The
system has been deployed and operated for over two years in pro-
duction. We hope that our years of experience provide a new angle
to viewing WAN network sharing in production and will inspire
follow-up research.

CCS CONCEPTS

* Networks — Network management; Wide area networks; Net-
work reliability; Network monitoring;

KEYWORDS

Wide-area networks, Bandwidth sharing, Network isolation

ACM Reference Format:

Satyajeet Singh Ahuja, Vinayak Dangui, Kirtesh Patil, Manikandan So-
masundaram, Varun Gupta, Mario Sanchez, Guanging Yan, Max Noormo-
hammadpour, Alaleh Razmjoo, Grace Smith, Hao Zhong, Abhinav Triguna,
Soshant Bali, Yuxiang Xiang, Yilun Chen, Prabhakaran Ganesan, Mikel
Jimenez Fernandez, Petr Lapukhov, Guyue Liu*, Ying Zhang. 2022. Net-
work Entitlement: Contract-based Network Sharing with Agility and SLO
Guarantees. In ACM SIGCOMM 2022 Conference (SIGCOMM ’22), August
22-26, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3544216.3544245

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9420-8/22/08. .. $15.00
https://doi.org/10.1145/3544216.3544245

250

1 INTRODUCTION

Meta’s backbone network interconnect Point-of-Presence (PoP) sites
and Data Centers (DCs), and are shared by all of Meta’s services
(e.g., storage, logging, Al, Ads, news feed, market place). In the past
five years, the number of services supported by WAN infrastructure
has increased by multiple orders of magnitude and the traffic volume
has grown from a O(10)Tbps to O(100)Tbps. During this explosive
growth period, one fundamental problem we have faced is how to
enable multiple services to share the backbone networks efficiently
and safely?

It is practically and economically infeasible to build capacity at
the rate of increasing demand. We have to find ways to efficiently
use the finite network capacity. Since network is a finite shared
resource, we also had to face the reality of disruptions caused by
misbehaving services (intentionally or unintentionally) e.g., a new
service feature or a software bug. Even worse, service disruptions
also raised accountability issues between the network team and
service teams. It was hard to attribute the disruption to misuse of the
network, or poor network management.

Insufficient capacity, increasing misbehaving services, and un-
clear operational accountability called for a new solution to effec-
tively plan, manage, and operate the shared network resource. In
this paper we present Network Entitlement, our solution to the above
challenges.

Network Entitlement is a network resource reservation framework
provided by the network team for all service teams. It aims to provide
a simple, stable, and operations friendly abstraction for sharing our
backbone networks. That is, a service is guaranteed certain amount
X of bandwidth with Y SLO guarantee for a given period of time.
Note that it has a significant departure from previous solutions, e.g.,
Google’s BWE [12], which models bandwidth sharing as a real-
time traffic engineering problem. Our work operates at a different
time scale and provides a complimentary angle to improve WAN
efficiency.

Our work also has noticeable differences from prior work on
data center-based network sharing [2, 5, 7, 11, 18, 21, 25], given
the three unique challenges rising from both WAN characteristics
and business model. First, because our services are internal, the
business model is fundamentally different from a cloud provider
environment. The framework needs to optimize for both network
efficiency and service agility. These two goals often conflict with
each other (more details in §4.2). Second, most of our services are
long-running network customers instead of short-term tenants, which
requires us to provide Service Level Objective (SLO) guarantees for
long time periods. We define different availability SLOs for each

https://doi.org/10.1145/3544216.3544245
https://doi.org/10.1145/3544216.3544245

SIGCOMM 22, August 22—-26, 2022, Amsterdam, Netherlands

class of service to standardize the network performance expectation
from services[1, 24]. The availability SLO measures the uptime
percentage per class of service, where uptime requires all traffic
in that class of service to be admitted in the network. Such SLO
guarantees are difficult to provide for WAN, sometimes they are
even infeasible to achieve.

To address these challenges, we examine the WAN network shar-
ing from a contract-based angle, and our framework has made the
following contributions:

(1) An agile and efficient entitlement contract abstraction: We
propose an entitlement contract abstraction which standardizes the
service’s network demand and SLO guarantees for a certain period.
The contract is used throughout the entitlement process and provides
clear accountability between the network team and service owners.
The representation of the contract is based on a Hose model [6],
which is used for long-term network planning [1]. A general hose
model can achieve agility but is not capacity efficient. Our insight
is that entitlement is a much shorter period (e.g., 3 months), thus
has more predicable traffic patterns. Based on this observation, we
propose a new segmented-Hose algorithm which incorporates service
deployments to reduce uncertainty by 60%.

(2) A dynamic SLO-based entitlement granting system: To
provide long-term SLO guarantees for a service, our granting system
analyzes possible network failures (e.g., fiber cuts) and changes (e.g.,
new links) in advance. By synthesizing the service demand, potential
network failures, and available capacity, the system dynamically sets
reachable SLO targets for the service. While this process achieves
the desired SLO guarantees, the process is computationally intensive
and thus not feasible to be applied to every service. To address this
issue, we identify a relatively small number ("10) of consumers of
the network that account for the majority of network usage. We call
them high-touch services and the rest of the services are grouped into
one low-touch service. The granting system sets an entitlement for
each high-touch service and for the low-touch services on aggregate,
which significantly reduces operation and computation overheads.

(3) A large-scale distributed run-time enforcement system:
To enforce the entitlement contract on production traffic, we build
a large-scale distributed run-time enforcement system on our end
hosts (servers). Different from prior work [12, 21], our operational
experiences provide two key insights: a) Traditional pure endhost-
based approaches (e.g., through rate-limiting) often make immature
decisions and affect network utilization; instead, our endhosts only
classify and mark packets into different classes, and leave final de-
cisions (e.g., drop or transmit) to hardware switches. b) Given two
common flow-based and host-based marking approaches, our experi-
ences show that the host-based approach can leverage applications’
builtin resiliency mechanisms, thus achieving better performance.
Moreover, it provides easier troubleshooting and better interpretabil-
ity to service teams.

(4) Extensive evaluations including real-world end-to-end test
drill: We demonstrate the effectiveness of our framework not only
through extensive simulations but also using a real-world end-to-end
test drill. With careful control on services, we introduce real con-
gestion and observe the success of service isolation and bandwidth
guarantees.

251

S.Ahuja et al.

Our system has been deployed in Meta for over two years on
O(100Tbps) traffic from O(100k) endhosts. To the best of our knowl-
edge, we are the first to introduce the entire WAN entitlement
process, related practical concerns, and our production solution to
academia. It provides a new angle to WAN sharing at a longer time
scale with a simpler and more stable interface. We hope our years of
operational experience can provide a fresh contract-based angle to
viewing WAN network sharing problem and inspire a new line of
research. This work does not raise any ethical issues.

2 BACKGROUND AND MOTIVATION

In this section, we first provide the background on Meta’s services
which share the network infrastructure, and then use example inci-
dents to show why launching the network entitlement program was
urgently needed.

2.1

Our network supports thousands of diverse applications, including
both consumer-facing business apps (e.g., Ads) and internal support
services (e.g., Storage). According to the business priorities and
traffic types, we broadly classify traffic into a few QoS classes.
Figure 1 and Figure 2 show the traffic distribution from two QoS
classes.

Meta’s Service Ontology

Diverse service types: By comparing these two figures, we can see
1) the distribution of traffic varies significantly across QoS classes.
Each QoS has a few dominating services (<10) that account for
the majority of network usage, and thousands of other services that
use a small fraction of capacity. 2) Traffic from one service can
belong to more than one traffic class. For example, the majority of
Warmstorage’s data traffic is in Class B, but a small amount of its
control traffic is in Class A. 3) Most dominating services are related
to storage, e.g., Logging [10], Warmstorage [17], Coldstorage [3],
Datawarehouse [22], MultiFeed [27], and Everstore (a distributed
key-value store) [16]. Although storage being a top network con-
sumer is known, we further show the variety of storage services exist
in a typical Internet company. It implies a need for finer-grained
network support even for storage.

Distinct traffic patterns: Besides differences in volume and traffic
classes, at the micro level, services exhibit distinct traffic patterns
even for a similar type of service. For example, Figure 3 shows the
traffic patterns of Coldstorage service (top) and Warmstorage service
(bottom) over a typical time series. Clearly, Coldstorage has regular
spikes while Warmstorage has a smoother pattern. This difference is
due to Coldstorage periodically turning on a rack of storage servers
to perform data operations and rotating across all racks, to achieve
more efficient power usage. In contrast, the fluctuation of Warmstor-
age is a consequence of the time-of-day effect. The large number of
diverse services, with different priorities and distinct traffic patterns,
present great challenges to sharing the network efficiently and safely.

2.2 Misbehaving Services Cause Disruptions

The services’ network demand is growing at a much faster pace,
roughly 30% faster than our capacity to build the network, which is
fundamentally limited by the increasingly scarce fiber resources. As
a consequence, there is an increase in service disruptions caused by
misbehaving services. Here we show two example incidents.

Network Entitlement

Warm Storage

Multifeed Zippydb

Business 2

Business 1 Warm Storage

Logging
Everstore
Other (Low Touch)

Figure 1: Service distribution of

a high QoS Class a low QoS Class

6.0 1 —— Unexpected Traffic Surge

@ --—- Predicted Traffic

s

=

L 5.0

[¢~]

[='=

E 4.5 1

[1=]

o
AT | _——L__—————

10
Minute

Figure 4: Misbehaving services: a service bug

0.08 4 = =
—— Services in QoS A
—--—- Services in QoS B
0.06 q "
a
0.04 §
S
0.02 4
0.00 1
o] 5 10 15 20
Minute

Figure 5: Loss induced to services in two QoS classes

Incident 1: Service Bug. The first incident was caused by a bug in a
latest version of a video client code. The bug mistakenly downloads
multiple duplicate videos in parallel. When the new version was
released, a traffic spike was created as the code was deployed on
a large enough number of client devices. As shown in Figure 4,
this spike was formed within three minutes, and the peak volume
was 50% more than predicated volume. This misbehaving service
quickly caused WAN resource contention, generating noticeable
loss for other services. As shown in Figure 5, all traffic of two QoS
classes’ that the service belong to were impacted, up to 8% loss
for traffic in Class A and 2% loss for Class B was observed. Note
that the figure shows a network-wide total loss, instead of just on
the bottleneck links. Previously, we had deployed QoS isolation
mechanisms to protect traffic across different classes, but this alone
cannot safeguard well-behaved services from misbehaving ones
within the same class or lower classes. This creates challenges in
accountability in determining who is responsible for the incident on
well-behaving services.

Incident 2: New Feature. Another incident happened when one
service changed its caching strategy to add a new feature. Instead of
fetching content from the cache servers at the edge, the new feature
fetches content from backend servers in data centers. As soon as the
feature was deployed, we observed an unexpected surge of backbone

SIGCOMM 22, August 22—-26, 2022, Amsterdam, Netherlands

Cossigzgt

cl

A

Multikegging
Figure 2: Service distribution of

252

Warmstorage

N
o

f
v

Datawarehouse

Coldstorage

Egress Traffic (Thps)
Y

N

Everstore
Other (Low Touch)

19:00:00 20:00:00 21:00:00 22:00:00 23:00:00
Time

Figure 3: Two storage services with distinct
patterns.

traffic from one region. This surge was 10% larger than the estimated
peak volume, causing loss spikes to other services. To prevent this
types of incidents caused by planned changes, the service teams
and the network team need to plan the network resources jointly,
otherwise it is hard to attribute responsibility.

These are only two representative incidents of many service dis-
ruptions caused by misbehaving services, intentionally or uninten-
tionally. A new solution to effectively plan, manage, and operate the
shared network resource was needed.

3 WAN NETWORK ENTITLEMENT

Network Entitlement aims to provide a solution to the above is-
sues by building a network resource reservation framework. The
framework manages a complex process involving both the network
and service teams, starting from a) service demand forecast that
estimates each service’s bandwidth usage to b) bandwidth granting
that grants maximum bandwidth for the service based on network
capacity; and finally c) runtime enforcement that enforces granted
bandwidth on the production traffic at run-time. Designing such
an entitlement framework presents three outstanding challenges we
discuss next.

3.1 Key Challenges

Challenge 1: Achieve Network Efficiency and Service Agility.
As an internal framework, it needs to optimize for both network
efficiency and service agility. On one side, the network team needs
to adjust bandwidth allocation and make sure the network is ef-
ficiently used, e.g., high bandwidth utilization. On the other side,
services need to make their business-specific decisions flexibly and
independent of the network team, e.g., moving traffic across re-
gions, changing communication patterns, or reallocating compute
resources. Unfortunately, these two objectives often conflict with
each other. High network utilization requires accurate traffic patterns,
whereas agile traffic movement requires over-provisioned network
resources to accommodate the uncertainty. Having a single team
make all related decisions (e.g., server deployment, traffic alloca-
tion) is operationally infeasible.

Challenge 2: Meet long-term SLO guarantees. Most Meta ser-
vices are long-running services, thus the framework needs to provide
expected SLO guarantees for a long period (e.g., 3 months). Provid-
ing such guarantees cannot just rely on the current bandwidth usage,
but needs to consider possible network changes and failures in ad-
vance. Prior work on data center network sharing [2, 5,7, 11, 18, 21]
cannot achieve this goal for two reasons: a) their consumers (e.g.,

SIGCOMM 22, August 22—-26, 2022, Amsterdam, Netherlands

cloud tenants) are short-term, so they only need to consider short-
term behavior based on the current network snapshot; and (b) data
centers have pre-deployed redundancy and homogeneous hardware
(i.e., similar racks, each holding similar servers). WANSs, on the other
hand, have much less built-in redundancy and heterogeneous region
capacities (i.e., each data center is built differently).

Challenge 3: Large number of services and high volume of traffic.
To serve all of Meta’s services, scalability is one of the main chal-
lenges, rooted on two different aspects: (a) the entitlement process
involves thousands of Meta’s services, each with specific require-
ments and distinct traffic patterns (as shown in §2.1); (b) the final
granted bandwidth needs to be enforced on a large volume of produc-
tion traffic (O(100T) capacity). A non-scalable solution not only fails
to achieve the goal of entitlement but also may disrupt day-to-day
business.

3.2 Entitlement Process Overview

In this section, we present the entitlement contract used through the
entitlement process, and the high-level workflow we use to address
the above challenges.

Entitlement Contract: An entitlement contract is an agreement

established between the network team and each Network Product

Group (short for NPG) of the service team. We use NPG and service

interchangeably in the rest of the paper. The contract specifies a)

network SLO target, represented by network availability, e.g., 0.9998;

and b) a list of bandwidth entitlements. Each entitlement has five

fields: <NPG, QoS class, region, entitled rate (bits/s), enforcement
period>. The first three fields together delineate a set of flows; the
last two fields set the maximum supported rate (bits/s) for specified
flows during a certain period. For example, <Ads, A, M, 1Tbps,

T1 — To> means Ads service’ ClassA traffic of region M has been

entitled 1Tbps bandwidth during Tj to T>.

The contract is used through the entitlement process and provides
clear accountability between the network team and the NPGs. If
an NPG generates traffic within the entitled rate and the network
cannot support it, accountability lies with the network team. If an
NPG generates traffic above the entitled rate, then the responsibility
lies with the NPG. Such demarcation helps troubleshoot outages and
post-mortem analysis. The main goal of entitlement process is to
establish and enforce the contract which include four key steps:

1. Service Demand Forecast (§4.1): the network team works closely
with NPGs to estimate their demand periodically (e.g., every
three months). To improve forecast accuracy, many factors need
to be considered such as application characteristics, user growth,
and architecture changes etc.

2. Contract Representation (§4.2): The service demand forecast
uses a Pipe-based model, as it captures service specific require-
ments accurately. However, this model restricts service traffic
patterns and is not flexible. Thus, we convert it into a more agile
Hose-based representation to specify service demand in the draft
contract.

3. Contract Approval (§4.3): Before generating the final contract,
the demand requests from NPGs need to be assessed by the
network team. Specifically, the network team a) analyzes possible
network risks in advance; and b) sets up reasonable SLO targets

253

S.Ahuja et al.

with service teams based on the network capacity and potential
risks.

4. Runtime Enforcement (§5): All contracts are stored in a database
and the approved contracts of the current period need to be en-
forced on the production traffic. An enforcement agent that runs
on each host monitors network usage and enforces the entitled
rates on the corresponding flows.

4 ESTABLISH A CONTRACT

4.1 Service Demand Forecast

Service demand forecast affects both the network efficiency and
service performance. Demand over-estimation will lead to inefficient
use of the network bandwidth; under-estimation will put service’s
traffic needs at risk. An effective forecast framework needs to cover
three aspects: (a) A well-defined metric agreed upon between the
service and network teams to represent the demand; (b) An accurate
model that computes the metric for different services, capturing both
organic changes (e.g., seasonal growth) and inorganic changes (e.g.,
architectural changes); and (c) The model needs to be flexible to
address service specific characteristics.

SLI Metric: We use a Service Level Indicator (SLI) metric to repre-
sent the forecast demand, facilitating the communication between
different teams. The SLI metric is defined as the bandwidth usage of
three consecutive months. The choice of three months (a quarter) is
very important. On one hand, if the time window is too small (e.g.,
every day), it may not reflect the service’s common behavior and
also result in unnecessary entitlement overheads; on the other hand, a
large time window (e.g., a year) may fail to address service demands
in a timely manner. In Meta, different teams often plan and propose
significant changes in a quarterly basis, thus making 3-month a good
time frame to communicate across teams. The SLI metric can be
represented as (NPG, QoS, src_region, dst_region, bandwidth), for
a given NPG, its QoS, the source, and destination regions. We next
discuss how to compute the SLI for different services.

Organic Changes: Time is a crucial factor affecting the service
demand, e.g., traffic bursts during holidays. We refer to time-related
changes as organic changes, and they often show periodic and sys-
tematic patterns over time, thus can be captured by a time-series
model. We use Prophet [13], Meta’s open sourced time-series fore-
casting algorithm. It takes historical data as the input and decom-
poses the time series into 3 components: trend, seasonality, and
holidays, e.g., y(t) = trend(t) + seasonality(t) + holidays(t) + ;.
The error term €; represents any idiosyncratic changes.

While the Prophet Algorithm serves as a basis to capture timing
factors, we need to consider additional service characteristics. For
example, different services need different types of daily data to
feed into the model, e.g., daily max average of 6 hours for storage
services, and daily p99 for ads service. For big services, we consult
service owners to make more fine-grained adjustments. An example
is Scribe [10], the log management service. Its traffic consists of
either writes (log creation) which is almost always within region, or
reads (consumption) which is mostly cross region. Thus, we refine
the prediction for reads by incorporating log category, read datasets,
and minimum and maximum growth expectations provided by the
services to adjust the model.

Network Entitlement

Inorganic Changes: Beyond organic changes, there are other factors
that can affect the accuracy of demand forecasting, we refer to these
as inorganic changes. Some examples of these include: (1) Traffic
QoS class changes; (2) Region moves, e.g., moving a service from
the existing region to a new one; and (3) Architecture changes, e.g.,
adding a caching tier.

Unlike organic changes, inorganic changes are usually impossible
to predict by patterns, thus cannot be modelled by a pure time-series
model. One such case is the addition of new regions or decommis-
sioning of existing servers that serve a particular service in some
region. For example, if storage is going to start in a new region, we
know of these “planned” changes in advance and can predict the
demand based on the allocated power and servers in the new regions.
There is a relationship between these regressors and expected traf-
fic demand which will be captured by the machine learning model.
Thus, each change is modeled using the following format and is
predicted using a tree-based model: (request_type, NPG, QoS,
src_region, dst_region, bandwidth)

There are two types of regressors: a) the adjusted monthly traffic
volume computed by the time-series model capturing organic fac-
tors, and b) inorganic factors such as power and regional fluidity
usages, e.g., flash, disk, RCU, and sever count of different server
types. These regressors are fit into a tree-based model with quantile
loss (e.g., alpha=0.5) as : f(Xregion,NPG,t) = f(Xregion,NPG,t—l,
Xregion,NPG,t—Z,Xregion,NPG,t—3a Yregion,NPG,t—la Yregion,NPG,t—z,
Yregion,NPG,t-3), Where Xyegion NPG,t—h Tepresents the NPG traffic
of month ¢ —h in the specified region, and Y, ¢gion NPG,t—h TEPresents
the related inorganic changes of that month. Running this model for
the next three months (e.g., t, t + 1, and t + 2) generates the final
forecast demand for the next quarter, i.e., the SLI.

The computed SLI, capturing both organic and inorganic changes,
is used as the initial request to the next module.

4.2 Hose-based Contract Representation

The estimated demand cannot be directly used for the entitlement
contract across teams for two reasons: (1) it is based on the current
traffic patterns and cannot accommodate possible traffic movement
flexibly; (2) it doesn’t consider possible network risks to provide
long-term SLO guarantees. We discuss how to address the first issue
in this subsection, and the second in §4.3.

Strawmanl1: Pipe-based model. Service forecast demands are pipe-
based requests, which are defined by a pair of source-destination
regions. To understand why this fails to accommodate flexible com-
munication patterns, let’s consider the example service shown in
Figure 6(a). Ads service has servers in five regions A to E, and as-
sume each server sends or receives cross-region traffic. The demand
forecast is 300G from A to B, 100G from A to C, and 250G from A
toD and A to E.

Without considering any risks (relaxing this assumption in §4.3
later), the network team needs to reserve 900G of capacity for Ads
(Figure 6(b)). Although this reserved capacity meets the forecast
traffic demand, Ads does not have the no option to move its traffic
in the future. If Ads wants to move 200G traffic of A->B to A->C, it
cannot do this movement independently of the network team. Thus,
the pipe-based model is not ideal to achieve flexible communication
patterns.

SIGCOMM 22, August 22—-26, 2022, Amsterdam, Netherlands

Strawman2: Hose-based model. Another strawman solution is the
Hose-based request model which has been used for long-term net-
work planning [1, 6]. Different from the Pipe model, it aggregates
ingress and egress traffic per region. For simplicity, we only con-
sider egress traffic here. As shown in Figure 6(c), the pipe requests
can be aggregated into a Hose request, which is 900G egress for
A. To satisfy this Hose request and accommodate every possible
communication patterns, the network team needs to reserve 900G
for all possible destinations. This allows the Ads team to do much
more flexible traffic movement. However, the hose-based entitlement
requires 3600G capacity in the worst case, four times more than the
pipe-based model, thus is not capacity efficient.

Our Solution: Segmented Hose. To achieve both flexibility and
capacity-efficiency, we propose an enhanced Hose model-segmented
Hose. Our observation is to leverage compute and storage allocation,
which is often stable in the short term, generating predictable traffic
patterns. For example, Figure 7 shows the traffic distribution for
one storage service across all source regions to a given destination.
67% of traffic is sent from 3 regions, indeed, two of them are other
storage regions and one is the region hosting compute resources. This
observation makes it possible to incorporate service deployments
into the Hose requests and reduce the demand uncertainty.

Based on this observation, we propose a segmented Hose algo-
rithm. The key idea is to split a given Hose into two or more seg-
mented Hoses, with each segment covering a subset of target regions.
For example, as shown in Figure 6(d), segmentl covers B and C
regions while segment2 covers D and E regions. This segmentation
reduces the reserved capacity needed for the same forecasted de-
mand, e.g., 400G for B/C, and 500G for D/E, which add to 1800G in
total, only half of the general Hose model. It also maintains flexibil-
ity, i.e., traffic can move between B and C without requiring changes
to the entitlement. The segmented hose offers a reasonable middle
ground between the pipe-based model and the agnostic hose-based
model, while increasing the degrees of freedom of the model.

We formulate the segmented Hose based on the the general Hose
model. The general Hose can be expressed in the form of ingress
and egress constraints as follows:

Z f(sre,dst) < constraint [ingress constraint]

srceNodes)
Z f(sre,dst) < constraint [egress constraint]
dsteNodes
The N-segmented Hose decomposes a Hose’s ingress and egress
constraints into N constraints (we take N=2 and the egress constraint
as an example):
Z f(src,dst) < a * constraint
dsteS
Z f(sre,dst) < (1—a) * constraint (2)
dsteSy
where Sy NSy = 0 and S; US; = Nodes; 0 < a < 1

As aresult of a Hose’s segmentation, we would reduce the volume
of the convex polytope delimited by the Hose, which means we can
use less capacity to build the network (or conversely, admit more
bandwidth at any given availability). The larger the reduction in the
polytope volume, the larger the gain to be achieved.

To find the best segmentation, a general aggregation-based ap-
proach has three main steps: (1) Aggregate all traffic for a given QoS

254

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

300G 100G
250G 250G

cr &

(a) Demand Forecast
A->B=300G, A->C=100G
A->D=250G, A->E=250G

300G 100G
250G 250G

(oY

(b) Pipe-based Model
Total capacity=900G
Not flexible

E

e

(BJ. s-e00c {C]

900G l 900G

9‘ooGﬁ) 900G

(c) General Hose Model
Total capacity=3600G
Not capacity-efficient

S.Ahuja et al.

(B} et (E)

(d) Segmented Hose
Total capacity=1800G
Flexible and capacity-efficient

500G & T, 500G

Figure 6: (a) Demand forecast of an example service. (b) Pipe-based model. (c) General Hose Model. (d)Segmented Hose.

A06115E05 363346605
0015274369 0.0234243560,00624691.
0020665503 Ie1EDs
sssssssss
0020993788
o.02se73911

oozs123562
- \

0.028891788

36353605

0.150276167

Figure 7: Traffic distribution across sources for one dst DC

class; (2) For each src region, plot the time series of flow per dst
region, denoted as F(dst, t); and (3) For every set of nodes S (with
the complementary set being S’), we compute its ratio R(S, t) and
related o variables as follows:

>, F(dst,t)
_ dsteS
Rs,8 = S F(dst,t)
dsteN
a*(S) = max{R(S,) }:a” (S) = min{R(S,) }; Q)

a*(§') =max{R(S',t) };a (') = min{R(S', 1) };
at(S)+a () =La (S)+a*(S) =1;

In terms of Hose polytope volume reduction, the highest reduction
in volume can be achieved for any segmentation that includes the
maximum number of dimensions in one of the new constraints (due
to the curse of dimensionality). When partitioning the hose, the
ratios are « and (1 — &), which offers an optimum decomposition
(i.e., the fractions sum up to 1), and avoids over-provisioning (if
the hose segmentation coefficients sum up to more than 1, then the
hose volume reduction would be sub-optimal). For the two segments
case, splitting ratio of 50% yields the largest reduction in volume,
as it scales as @ * (1 — «). Thus, the best segmentation can be found
by getting the largest set S (in terms of number of nodes) such that
a*(S) < 0.5; or conversely, the smallest set S such that &~ (S) > 0.5.
Two-Segments Algorithm: We use a greedy algorithm to split one
Hose into two segments, based on the &~ (S) > 0.5 condition. As
shown in Algorithm 1, we first compute the o~ for each destination
node in N using equation 3 (/ine 2-3). Then, we rank nodes in order
of its ™ decreasingly (line 4). Finally, we add the nodes in the ranked
order into the first segment set SEG (line 5-9). For each node added,
we recompute o~ (SEG), until its value is larger than 0.5, meeting
the condition to get the best segment. The second segment set SEG’
is the rest of nodes in N (/ine 10). While our system currently uses
two segments for simplicity and its good performance (details in §7),

Algorithm 1 Segmented Hose Algorithm

Input: N: set of destination nodes.
Output: SEG: set of nodes in segmentl, SEG’: set of nodes in segment2.
: SEG=SEG' =0
: for each node n € N do
n.r = a~ ({n}) » Compute the &~ using equation 3
. sort the nodes of N into non-increasing order by the value of n.r
: for each node n € N, taken in non-increasing order by n.r do
if ™ (SEG) < 0.5 then
SEG = SEG U {n}
else
break
: SEG’ = N\ SEG
: return SEG, SEG’

CoY®ENoUE WS

—_—

our algorithm can be generalized into more segments. Evaluating
the effectiveness of more segments in real deployments is our future
work.

4.3 Entitlement Contract Approval

Given the Hose-based draft contract, containing a list of entitle-
ment requests <NPG, QoS class, region, entitled rate, enforcement
period>, the next step is to approve them based on the available
network capacity. There are two key requirements for the approval
process:

o Achieving long-term SLO guarantees. Most Meta services
are long-standing, so the approval decision should not be made
only based on the current service demand, but needs to consider
long-term behavior.

o Enforcing priority between different service types. Meta
classifies backbone traffic into four classes which we refer to c1,
c2, c3, and c4, with a decreasing priority. With limited capacity,
a high priority class’s demand should be approved before lower
priority classes.

To achieve both requirements, the key challenge is the large num-
ber of services. Achieving long-term SLO guarantees requires as-
sessing network risks, a process that enumerates all possible failure
scenarios for each request. This process is computation heavy and
infeasible to complete for all requests for every service individu-
ally. Luckily, we are able to identify a relatively small number of
consumers of the network that account for the majority of network
usage (Figure 1 & 2). We call them high-touch services and the rest
of the services are grouped into one low-fouch service. We try to
satisfy low-touch service first given their large number of distinct
services. We currently have less than 10 high-touch services, and
we haven’t had large changes to these definitions in recent years. A
new large demand would normally fall under one of these services,

255

Network Entitlement

for example, network demand caused by newly developed Al clus-
ters falls under one or more of the previously defined high-touch
services.

To process different classes of requests, our approval algorithm

has two main routines: Hose_Approval and Pipe_Approval. The
Hose_Approval first converts Hose requests into a list of representa-
tive Pipe requests, which are then processed by the Pipe_Approval
to do risk analysis [24] and enforce service priority. We specify this
algorithm (Algorithm 2) in Appendix and highlight the key steps
here.
Approval Process: Hose_Approval takes in backbone topology,
entitlement contract, and Hose requests (generated by §4.2) as input,
and returns a list of approved Hose requests as output. It first converts
Hose requests into representative Pipe requests using an algorithm
introduced by Meta’s long-term network planning work[1]. Its key
idea is to narrow down infinite possible Pipe realizations into a small
set of representative ones, which still covers a significant portion of
the Hose polytope. Given a list of Pipe requests, Pipe_Approval is
called as a sub-routine to analyze each of them.

The Pipe_Approval assesses risks of the Pipe requests and en-
forces the service priority. It starts from Pipe requests of the most
premium class (c1_low) and works on one class at a time until reach-
ing the least premium one (c4_high). To provide long-term SLO
guarantees, Pipe_Approval assesses risks of Pipe requests using
Meta’s Risk Simulation System (RSS)[24]. The RSS generates the
bandwidth availability curves based on the network capacity and
reliability. With the availability curves, the Pipe approval is calcu-
lated by finding the flow volume associated with the desired SLO
target. Only when 100% of the flow meets SLO, the batch of flows
is approved. If any flow fails, the batch is rejected.

Finally, Hose_Approval aggregates approved Pipe requests to get
the Hose approval. Different aggregation approaches could affect the
network usage and service guarantees, we currently sum up Hose
approvals and use the minimum of each as the final Hose approvals.

In the approval algorithm, we approve as much demand as pos-
sible as the capacity allows. However, it is common for us to not
be able to approve everything our users are asking for. It does not
mean that the services cannot send traffic more than the approved
entitlements, just that we don’t provide guarantees. The goal of
network entitlement is to provide guarantees and isolations for our
users, and not to always provide 100% approvals. In those situations,
there are two possible actions - (1) we work with services to explore
alternative demand patterns (e.g. using different regions) or (2) we
clearly communicate the implications and move forward with the
under-approval. In many cases, service owners accept the risk of
going over their approvals.

5 RUNTIME ENFORCEMENT

With the established contract, we next discuss how to enforce it in
the production network. This is achieved by our enforcement system
that runs on every host.

At a high level, our run-time enforcement system consists of
three key components: (1) Querying contract which queries the
centralized contract database to match the list of policies applicable
to each host. For example, given a source host H with QoS class A,
its EntitledRate should be X Gbps. (2) Metering which measures
and aggregates the actual traffic rate of all hosts for each service and

SIGCOMM 22, August 22—-26, 2022, Amsterdam, Netherlands

Region 2
Service metering & marking Enforcement

(Host) (Hardware Switches)

Service A

/ QoS class B Queuc
. -
—— .

Non-conforming Queue

QoS class B Traffic

Figure 8: Current Solution Architecture

checks whether the EntitledRate is violated; and (3) Enforcement
which enforces the EntitledRate on the specified flows in the net-
work, e.g., dropping a portion of non-conforming traffic that is over
EntitledRate during congestion. There are three key challenges of
building a practical run-time enforcement system:

o Scalability: The enforcement system needs to run on every host.
How can we scale the system to handle Tbps of traffic across
tens of thousands of hosts?

o Reliability: A failure of the enforcement system can result in
the enforcement contract not being honored, which could end
up affecting well-behaved conforming services. How can we
minimize complexity so the system can enforce the contract
reliably?

o Efficiency: Metering and enforcement consume CPU and mem-
ory resources. How can we efficiently implement them so they
have minimal impact on normal services?

In the rest of this section, we first present our early generation of
the architecture and discuss how it evolved into the current archi-
tecture to address the above challenges more effectively (§5.1). We
then present our experienced-based metering algorithm (§5.2) and
enforcement approach (§5.3) to address practical deployment con-
cerns.

5.1 Architecture Evolution

First Iteration: The first iteration of Meta’s bandwidth manager was
a centralized system consisting of: (a) A Controller that connected to
a centralized contract database and all agents; and (b) Endhost agents
installed on every host. The controller made enforcement decisions
by querying the contract database and collecting traffic stats from
each agent. The agents received the decision from the controller and
applied rate limits to the corresponding egress traffic. For instance,
if flow A’s traffic rate exceeded its EntitledRate, the agent would rate
limit the respective flow before it left the host. This implementation
leveraged the iptables [23] and qdisc [14] mechanisms provided by
the Linux kernel.

This architecture performed well when the system served a lim-
ited number of services (e.g., O(10k) hosts) but presented two key
challenges. First, computing per-host rates proved challenging to
scale as the number of services (hosts) increased. Second, because
the agents rate-limited traffic at the source, on occasion services
ran into co-flow completion issues even when the network was not
congested.

256

SIGCOMM 22, August 22—-26, 2022, Amsterdam, Netherlands

Distributed KV store
publish

| Applications Enforcement Agent ’:—J— Distributed KV store
User space d counter read
Kernel space -"é
5 ‘BPFmaps EEEEE‘

TCP

Figure 9: The architecture of enforcement agent

=]
| |
L1 1]
Egress DSCP marked IP Packets

o
=" a8

Egress IP Packets

Current architecture: To address the issues in the first iteration, we
evolved to second generation architecture (shown in Figure 8) with
two major changes:

o Centralized architecture — Distributed architecture: Instead
of relying on a centralized controller to make every decision,
we evolved the system into a fully-distributed architecture in
which each agent makes decisions independently. By removing
the controller layer, we limit the impact of potential controller
failures or the interactions between the controller and the agents.
This simplified architecture improves both scalability and relia-
bility.

o Endhost-based enforcement — In-Network enforcement: In-
stead of rate-limiting traffic at the endhost, we decided to clas-
sify packets at the endhost instead, and leave enforcement deci-
sions to the hardware switches. This is based on our observation
that it is difficult to know the instantaneous network capacity.
Compared to the endhosts, switches have firsthand information
about available capacity, thus should make the final drop de-
cisions. This change simplifies the endhost agent since it only
marks traffic rather than shape it, requiring much less resources.

Enforcement Agent: The agent consists a user-space component
and a kernel component as shown in Figure 9. The user-space com-
ponent is responsible for querying the centralized contract database
and monitoring the traffic rates. Each agent publishes flow rate in-
formation (bits/sec) periodically using Meta’s internal distributed
key-value store. These rates are aggregated remotely across the entire
service and read by the agent periodically. Based on the queried con-
tract rate (EntitledRate) and aggregate service rate (TotalRate), the
user-space component computes desired actions independently, e.g.,
which flows should be marked as non-conforming traffic (details in
§5.3).

The kernel component applies the computed actions to the outgo-
ing traffic. We use a Berkeley Packet Filter (BPF) program. Specifi-
cally, the actions are programmed in BPF maps, which are consulted
by the BPF program to match packets during egress and apply the
corresponding action. Figure 9 shows an example of the BPF pro-
gram remarking non-conforming traffic (red) to a special DSCP
value.

We choose to re-mark non-conforming traffic using agents on
the endhosts instead of switches for two reasons. First, it is easier
to determine the traffic attributes such as service or product-group
name/IDs etc.These attributes tend to be difficult and complex to

257

S.Ahuja et al.

decipher on switches. Second, it is not always feasible to dynamically
retrieve policy and compute traffic rates on different switches.
Network enforcement: While we don’t re-mark traffic on the switch,
we let the switch make the final drop decision. This is based on the
marked DSCP value carried by each packet. The DSCP value of non-
conforming traffic is mapped to a network queue with lowest priority
in switches across both DC and Backbone!. When there is enough
capacity, the switches transmit all packets irrespective of allocated
entitlements. When there is congestion, the non-conforming traffic
will be impacted before the conforming traffic.

Given the distributed enforcing architecture, we present how to
compute the non-conforming traffic in §5.2 and the non-conforming
traffic for remarking in §5.3.

5.2 How Much to Remark

In this section we explore how each agent can independently com-
pute the amount of service traffic that should be remarked as non-
conforming given the observed service rate (TotalRate) and the
queried contract rate (EntitledRate).

Stateless metering: Naively we could assume that the amount of
remarked traffic corresponds to the ratio of excess traffic above the
EntitledRate. Then, periodically compute NonConformRatio based
on the difference between TotalRate and EntitledRate as follows:

TotalRate — EntitledRate

NonConformRatio = ——M—— “4)
TotalRate

ConformRatio = 1 — NonConformRatio)

NonConformRatio could be used by the agent to determine the
fraction of traffic to remark. As an example, assuming the Ads
service has a 5 Tbps EntitledRate for QoS class B. If the observed
TotalRate is 6 Tbps, then the NonConformRatio would be é and
ConformRatio would be g. Then, % of the traffic should be remarked
to ensure EntitledRate is honored.

This approach would work well during steady state when the

network characteristics of both conforming and
non-conforming traffic are similar. However, during congestion sce-
narios the non-conforming traffic could observe much higher loss
thus any action taken on the non-conforming component of TotalRate
would have a dampened effect.
Stateful metering: The key insight behind this approach is that
conforming and non-conforming traffic can be subjected to different
congestion states (i.e. non-conforming traffic could observe much
higher loss or delay than the conforming traffic). This suggests the
combined TotalRate should not be used to compute actions for both
types of traffic. Instead the aggregate conforming rate for the service
ConformRate should be used while at the same time keeping track
of the previously computed ratio PrevConformRatio in each cycle to
compute ConformRatio and NonConformRatio as follows:

. . EntitledRate .
ConformRatio = —————— * PrevConformRatio (6)
ConformRate
NonConformRatio = 1 — ConformRatio @)

Intuitively, when the EntitledRate is larger than the ConformRate
(ratio > 1) for the current cycle, it means the service is remark-
ing more traffic than necessary, thus the ConformRatio should be
increased for the next cycle. Conversely, when the EntitledRate

'Non-conforming traffic is always mapped to the lowest priority queue regardless of the
original QoS class it belongs to.

Network Entitlement

Service

Host Flow Shard | [

Flow 1)
Non-conforming
1 1 |
L1 1]
——
Conforming
[1 1 |
L1 1

Flow 2
Flow 3

Flow n

Figure 10: Flow-based remarking

is smaller than the ConformRate (ratio < 1), it means the service
is not remarking enough traffic, thus the ConformRatio should be
decreased for the next cycle.

In the case all the traffic for the service goes back into confor-
mance (TotalRate < EntitledRate), the metering algorithm exponen-

tially increases ConformRatio, i.e. ConformRatio = 2+PrevConformRatio.

This allows rapid un-throttling but not immediate so as to avoid fluc-
tuations if TotalRate rapidly exceeds or falls short of EntitledRate.
We show this stateful algorithm can achieve the desired behavior in
the next section.

5.3 What to Remark

In the previous section we computed how much traffic should be
remarked as non-conforming traffic. We next need to decide what
traffic should be re-marked as non-conforming?. A poorly designed
marking approach may severely affect application performance.
Flow vs. Host-based re-marking: Remarking needs to done on
per-flow basis to avoid packet reordering. To control how flows are
re-marked, we consider two approaches: (1) a flow-based approach
that re-marks a fraction of flows on each host, and (2) a host-based
approach that re-marks all the matching service traffic from a frac-
tion of hosts.

Our system implements both approaches. As shown in Figure 10,
for the flow-based approach, we aggregate flows into groups and
assign each group an identifier (e.g., from 0 to 99). If the host agent
computes the NonConformRatio as 0.02 (like in the example figure),
then flows from groups 1 and 2 will be remarked as non-conforming
traffic. In the case of the host-based approach, all hosts are split into
groups identified by a unique group number. If the host belongs to
non-conforming traffic group (e.g., host 1 & 2), then all flows on
these hosts will be remarked as non-conforming traffic.

Our operational experiences show that the host-based approach
achieves better performance, facilities troubleshooting, and pro-
vides better visibility. While the flow-based approach provides fine-
grained control by picking a set of flows on different hosts rather
than re-marking all the traffic from the host, the result may manifest
as random individual flow failures. In practice, many applications
have builtin mechanisms to react to host failures, but not individ-
uval flow failures. Thus, with host-based remarking, when one host
is down, the application can automatically re-balance the load to
another host to mitigate failures (results in §7).

2Note that services signal which traffic to treat with a specific priority by marking the
corresponding flows with the appropriate QoS class. Our entitlement system enforces
remarking for each QoS class independently.

SIGCOMM 22, August 22—-26, 2022, Amsterdam, Netherlands

Besides application resilience, the host-based approach also helps
service teams easily identify affected hosts and adjust their deploy-
ment. Given these benefits, we use the host-based approach as our
default marking method.

6 REAL-WORLD ENFORCEMENT TESTS

We perform drill tests with the production live traffic every few
months to ensure the correctness of the runtime enforcement system.
In this section, we report the results of one of these tests from
September, 2021, and we attempt to answer two key questions:

o How effective is the runtime enforcement system on enforcing
the entitlement policy in production?

e What is the impact of the runtime enforcement system on ser-
vice performance?

Setup: We pick one of our biggest services Coldstorage [3] as our
test service. Coldstorage stores billions of photos shared daily on
Facebook. This test was run on O(10k) hosts, and millions of flows.
All other services are run on the same backbone as normal during
the test. We use the stateful host based remarking algorithm.

To evaluate our runtime enforcement system during different lev-
els of congestion, we first decreased Coldstorage’s egress entitled
rate for a selected region to increase non-conforming traffic in the
network. Then, we installed access control (ACL) rules in the net-
work switches to drop an increasing percentage of Coldstorage’s
non-conforming egress traffic in order to mimic congestion. The
drop percentage was progressively increased from 0%, 12.5%, 50%,
to 100% at “35 mins intervals until finally all ACLs were removed
after 105 minutes of test duration.

Metrics: We collected the following network-level and
application-level stats during the test:

o Network-level Stats include packet loss, traffic rate, round trip
time (RTT), and TCP stats (e.g., number of SYN/FIN/
RST packets), which can be collectively used to measure the
effectiveness of our enforcement system.

o Application-level Stats include read latency, write latency, and
block errors. These stats are monitored by the Coldstorage
service team and reflect the service performance. These can be
correlated with the network-level stats to understand the impact
on the service.

6.1 Network Stats

Loss Ratio: Figure 11 shows the loss ratio of non-conforming traffic
and conforming traffic over time as we installed ACL rules following
the methodology described above. We can see the loss ratio of con-
forming traffic (black dashed line) remains close to 0% throughout
the test. For the non-conforming traffic (red solid line), there are
four distinct stages with an increasing loss ratio, from 0%, 12.5%,
50%, to 100%. Finally, at close to 135 minutes, we rolled back the
changes and the loss ratio returned to a small value after a short
spike. This test confirms that the enforcement framework ensures
guaranteed performance to the conforming traffic regardless of the
severe loss of non-conforming traffic.

Traffic rate: Figure 12 shows the aggregate service total rate, con-
forming rate, and entitled rate as reported by the endhosts. The
difference between the total rate and the conforming rate represents

258

SIGCOMM 22, August 22—-26, 2022, Amsterdam, Netherlands

100
Time (M

Figure 12: Traffic Rate

"g« NN 3405

S.Ahuja et al.

80000

doig 4NON %001
doig %571

__. 60000

40000

AlPpu3 3531) dougl JNON %0

RTT (us

Total Rate

Conforming Rate
Entitled Rate

20000

Non Conforming
Conforming

150 20 250 270
in)

200 250

d0i0 %G 71

~

20000

doiq %05
daig %05

W_ doig %001

17500

15000

(papu3 351) 60I0 %0
(papu3 3sL) doiq %0

12500

(paue)s 3531) 401 %G 7T

'\Z

10000

Latency (us)

7500

5000

2500

10 = g = z 2500
= 2 g =
& 3 = :
g 2 g :
o8 =] < g 2000
3 _—
o g =
@ > & 1500
2 =]
Soa g 2
S 5 1000
0.2
—— Non Conforming 500
0.0 ——- Conforming
20 150 200 250 270 o 50
Time (min)
Figure 11: Packet Loss
25000 @ S 2 = 25000 1
4 o =2 2 3
@ *® =] B @
n 2 sl § o T
@ 20000 = =] = < 20000 g
> & = — &
m 3) 3
9 15000 = = =4
k4] 5 15000 H
2 g > g
£ 10000 N 53 .
> aARS + 10000 =
o V‘"\f‘gw’wﬁ‘ ,# 5 B
£ sooo "l
= L 5000
—— Non Conforming »«JJ’\""\
o ——- conforming I N
o 50 100 150 200 250 o 50

Time (min)

Figure 14: TCP stats: SYN Transmission

the non-conforming rate. At x=30 min, the entitled rate of Cold-
storage is reduced to 1Tbps. Before x=65 min, the total rate closely
matches the conforming rate as the service is not busy, but as service
traffic increases, more traffic is marked as non-conforming traffic.
Between x=70 min and x=195 min, as the drop percentage of non-
conforming traffic increases, the total rate continues to decrease until
it matches the entitled rate. After x=225 min (when all ACLs are
removed), the overall rate increases to pre-test levels. As a result all
traffic becomes conforming traffic and flows to the same queue. The
sudden competition of queuing resources creates fluctuations, which
stabilizes after a few minutes. The results from this test show that our
Runtime Enforcement system is able to enforce conforming traffic
to remain within the entitled rate, even during different congestion
scenarios.

Round Trip Time: Figure 13 shows the average RTT for conform-
ing and non-conforming traffic. The conforming traffic remained
unaffected during the test while non-conforming traffic shows a
slight increase except during 100% loss where all non-conforming
traffic was dropped. These results show that our enforcement system
can make decisions early on so the overall network queuing delay
is not affected. It also demonstrates that network resources are used
efficiently: if a packet is delivered, it is delivered without additional
delays.

TCP Stats: Besides basic network stats, we also collect TCP stats
including number of SYN, SYN/ACK, FIN/RST, FIN, RST, and Re-
transmit packets. Due to space limitations, we only show SYN stats
in Figure 14. The figure shows an increase of SYN packets for non-
conforming traffic as the percentage of dropped non-conforming traf-
fic increases, with a corresponding drop once the test is completed.
The metrics for conforming traffic remained unaffected during the
test.

6.2 Application Stats

Application metrics such as Coldstorage restore and upload were
impacted as expected. Coldstorage is the service for long-term reten-
tion of data such as image and tabular data. Coldstorage’s ingress
is the uploads (writes) to the storage servers and its egress is the
restores (reads). Coldstorage has agreements with its users that reads

100
Time (min)

Figure 15: Storage Read latency

259

o
gx\ 0} p3npal 3jey pafinug

100 150
Time (min)

Figure 16: Storage Write latency

150 200 250 50 200 250

will be completed less than 24 hours after a restore request is sub-
mitted. Therefore, if the network caused latency stays lower than
this threshold the service itself (Coldstorage and the reader) will
not see an impact on their performance metrics. The same goes for
other services. Read and write latency grew proportional to the
non-conforming traffic drops. The impact is similar across all clients
in different regions.
Read Latency: Figure 15 shows the read latency from one remote
region where clients are located. Generally, read latency grew pro-
portional to non-conforming traffic drops. As loss created more
unfinished TCP connections, there are more failed read requests
which increases the average latency. This growth trend continues
until the drop rate hits 100%. At this point, read latency decreases
drastically, as the subset of hosts remarked as non-conforming do
not establish TCP connections while the rest of hosts serve traffic
without issues. The spike in latency after rollback can be attributed to
a spike in TCP FIN/RST packets (omitted due to space constraints).
Something to note is that when the drop percentage is less than
50% (x<150 min), there is little impact on the application read
latency. This can be attributed to our remarking algorithm (§5.3) that
works at host-level (instead of flow-level) granularity. This makes
it possible to leverage application built-in failover mechanisms to
rebalance load from failed hosts to healthy hosts.
Write Latency and Error: Figure 16 shows the write latency from
a remote region to the region under test. Similar to read latency,
there is a gradual increase in latency matching the gradual increase
in network drops. The impact on write latency is severe even when
loss rate is small. This because writes are a stateful operation and
sessions take some time to move away from affected hosts. Figure 17
further shows the more severe impact on write, i.e., the block error.
The failure peak correlates well with TCP SYN error where the
connection is difficult to establish.

7 EVALUATION

This section evaluates each component separately and quantifies the
benefits in production.

Network Entitlement

—— Wirite Failure
84 —— Not Enough Memory
o

doig %05
doiq %001

S

papuz 3581 doig %)

Block errors
sdqLT 0) pdNDa Aley

[}

| T T |
100 150
Time (min)

os 15
Forecast Accuracy (sMAPE)

Figure 17: Block Write Error

7.1 Demand Forecast Accuracy

The accuracy of demand forecast is computed by comparing actual
usage (A;) against the forecast demand (F;). Specifically, we use
symmetric Mean Absolute Percentage Error (sSMAPE) computed as

n
SMAPE = % > (IA‘ il Figure 18 shows the cumulative distribu-
=1

(AtF) /2
tion of sSMAPE across all services in one QoS class. Note that by
definition, the range of sMAPE is [0,2]. We evaluate the forecast
result for the 50, 75", and 90" percentile for each service. Fig-
ure 19 shows the same set of metrics for another QoS class. Majority
of sMAPE is lower than 0.4. The difference of different traffic per-
centile is slim: p90 shows a slightly higher sMAPE. There are some
anomalies where sMAPE values are greater than 1. They are caused
by new region development, service rollout plan change, and old
region decommissions.

7.2 Benefit of Segmented Hose

To quantify the benefit of Segmented Hose model, we use the metric
“Hose coverage” [24] which evaluates the degree to which the gen-
erated traffic matrices (TMs) cover the entire Hose space. Ideally,
we want to use a small subset of representative TMs to cover a large
Hose space. To compare the Segmented Hose versus the general
Hose, we compute the number of TMs needed to achieve the same
coverage 75% with each approach. Figure 20 shows that in 90% of
the cases, Segmented Hose needs 60% fewer TMs. The reduction
of TMs needed to achieve a high Hose coverage means a drastic
decrease of computation overhead.

7.3 Bandwidth Approval Tradeoffs

The set of TMs are the input to bandwidth approval engine, affecting
the speed of approval computation. Another factor that controls the
TM set is the Hose coverage. Figure 21 shows that the coverage
increases with more TMs but with a smaller benefit when the TMs
reach a certain point, e.g., 2000 TMs. It illustrates a trade off between
the coverage and the approval speed, as approximated by the number
of TMs. The trends are consistent across QoS classes.

The second tradeoff in bandwidth approval engine is the approval
rate and network SLO. Figure 22 shows that as availability require-
ment increases, we have to reserve more bandwidth for each service
to meet the high availability under failures. As a consequence, the
total number of service requests approved is reduced. Egress and
ingress approvals exhibit similar trends.

7.4 Effectiveness of Enforcement

Finally, we use simulation to evaluate the convergence of host mark-
ing algorithms. Assuming a total traffic rate of 10Tbps and an entitled
rate of 5Tbps, we gradually simulate network congestion with a loss

SIGCOMM 22, August 22—-26, 2022, Amsterdam, Netherlands

10

Figure 18: Forecast accuracy for QoS A

260

o
a
o
— p50 — p50
------- P75 B R < 7]
e PO —==- p90

o's os 10 12

o.a
Forecast Accuracy (sMAPE)

20 o2

Figure 19: Forecast accuracy for QoS B

rate of 0%, 12.5%, 25%, 50% and 100% of the non-conforming traf-
fic. We test both stateless and stateful marking algorithms described
in §5. For each experiment, we observe the conforming traffic rate
and compare it to the entitled rate. We then plot both the instanta-
neous rate observed in each iteration and the average rate computed
across multiple iterations.

Figures 23 and 24 show the stateless marking algorithm results.
As congestion increases, the instantaneous curve fluctuates, e.g.,
between 5STbps and 10Tbps for 100% loss. The oscillation is due
to the fraction of traffic the algorithm decides to remark to non-
conforming gets dropped in the network and in the next cycle we see
only see conforming traffic which should be within the entitled rate,
the algorithm evaluates there is no need to remark any more, being
stateless, and decides NOT to remark any traffic as non-conforming.
This results in total rate (assuming steady demand) jumps back to
the original total rate of 10Tbps. Figure 24 clearly shows the average
of conforming traffic stays above the entitlement rate (5Tbps). This
means the marking algorithm fails to enforce the entitled rate.

In Figure 25, we can see the stateful algorithm is able to address
the issue. Both instantaneous and average curves are the same. The
results for 0% to 100% are the same, which converge to 5Tbps
quickly after the 10" iteration. The instantaneous and average rates
look similar, because the stateful algorithm already smooths out the
difference across iterations.

8 FUTURE DIRECTIONS

In this section, we share a few new areas that stem from our expe-
riences of implementing and operating network entitlement within
Meta over two years.

Bandwidth Negotiation: When the contract approval engine rejects
a service’s request, it is currently handled manually between net-
work and services as it can have many choices. One straightforward
way is to return back to service and reduce the requested demand
to try again. Alternatively, the approval engine could come up with
a counter-proposal of admittable traffic to service. However, it is
simply reducing the traffic directly to admittable volume, because
services may have to make server allocation changes to accommo-
date the lack of network bandwidth, resulting a new demand. More
complicated, due to dependency across services, the decision might
be populated to more than one service team. Services can even per-
form bandwidth trading if their dependencies require so. As a part
of our ongoing work, we are developing an automated negation
platform to facilitate those decisions.

Unbalanced ingress and egress Hoses: Surprising challenges arise
due to data quality and operational artifacts. One such example
is the inequality of total ingress and egress traffic demand when
aggregating all the ingress Hoses and egress Hoses together. That

SIGCOMM 22, August 22—-26, 2022, Amsterdam, Netherlands

1.0
0.75

0.2 0.70

0.65

erage (%)

0.6

CDF

3 0.60

Co

0.4
@ 0.55
W

o
0.2 T o.50
0.45
0.0 . | | | | | |
0.0 0.2 0.4 0.6 o8 1.0 o 1000
Segmented Hose/Pure Hose Ratio

Figure 20: Efficiency of Segmented Hose

S.Ahuja et al.

100 -\‘

20 ‘%}
80 ‘\

*
70 4

\
60 Y

-
=
591 -e—- Egress
=%=- QoS B 40 =3=- Ingress

Approved %

2000 3000 4000 0.90 0.92 0.94 0.96 o.9s 1.00
Traffic Matrices

Figure 21: Hose coverage and computation Figure 22: Approval percentage under dif-

Availability

overhead ferent availability

10 8 10
7 =z | =
oy g7 1 a
£ * Eef 5 S
2 85l v g
c 6 ©] © 6
'fn i 0% ';4 { — 0% '; Pl /N —— 0%
£ a4t -——- 125% | £, ———- 125% | £ 4 b ——- 12.5%
£ | -—-- 25% gz - 25% £ H - 25%
€ 21! —— 50% b — 50% € 21 — 50%
o | o1 S ¥
S 0% | S w00% | S || 100%

0 5 10 15 20 25 30 35 40 0 5 10 15
Iteration

Iteration

25 30 35 40 0 5 10 15 20 25 30 35 40
Iteration

Figure 23: Stateless marking algorithm with Figure 24: Stateless marking algorithm with Figure 25: Stateful marking algorithm with

instantaneous rate average rate

is, the total ingress and the total egress for the global WAN must
be equal. It is an artifact that the forecast of demand is performed
for each hose independently. To maintain the correctness of the
algorithm, we add a preprocessing to balance the ingress and egress
by inflating the shortage direction. For example, if total egress is
less than total ingress, we will inflate the egress so that they matches.
This delta of the demand is modeled as a dummy service and is
evenly attributed to all regions.

Ingress metering: In the current implementation, our runtime en-
forcement system takes the egress entitled rate as the input to control
the amount of outgoing traffic from each host. However, in practice
we observe the need to also perform metering to conform with the
ingress entitled rate. Since metering can only be performed at the
source, we need to translate the ingress entitlement Hose for a desti-
nation to a distributed set of meters at the sources. This requires both
new algorithm design and more sophisticated centralized control.

9 RELATED WORK

There is a large body of work on enabling bandwidth sharing for
cloud providers [2, 5, 7, 11, 18, 19, 21, 25]. Our work shares the
similarity from two aspects. First, from the demand modeling per-
spective, these works take the per-VM hose based traffic demand and
allocate VMs to minimize the total bandwidth consumption. These
workloads are usually short-lived so that there is no need to con-
sider failure probability and protections. For instance, Oktopus [2]
proposes a VM placement algorithm based on the Hose constraints
of any two sets of VMs. This model essentially adds up all the
worst-case TMs and results in significant over-provisioning. An-
other example is TIVC [25] which extends the per-VM hose model
to capture the time-varying nature of the networking requirement
of cloud applications. We extend our opportunistic hose planning
algorithm [1] to incorporate the short-term traffic pattern. Second,
these existing work take the approach of rate-limiting at the host.
We found centrally determining the throttling rate in real-time does
not work well but increases management complexity greatly.

261

instantaneous rate

DRL [20] is a solution for distributed rate control for TCP, how-
ever, it does not account for network capacity or SLO guarantees.
BWwWE [12] focuses on WAN bandwidth sharing but operates on a dif-
ferent time scale and is not SLO aware. Solutions such as SWAN [8]
and B4 [9] focus on Software Defined Networking to effectively
manage WAN network. Recent work has also tackled SLO and fail-
ure aware traffic engineering such as TeaVaR [4], FFC [15], and
BATE [26]. These efforts are complementary to the approach in this
paper.

Lastly, this system is built on top of previously published systems
in Meta’s infrastructure [1, 24] but is solving a completely indepen-
dent problem. While hose model [1] and network risk [24] is used
for long-term network planning, they have been used differently in
network entitlement.

10 CONCLUSION

Network efficiency and safety has been an increasingly critical topic
for the giant online service providers to keep up with the service
growth in a sustainable manner. This paper tackles this problem by
introducing Network Entitlement, a new contract-based approach.
We describe an end-to-end system to provide agile and efficient
network bandwidth sharing with SLO guarantees. We hope to bring
a new angle to research on intelligent network multiplexing for
further innovations.

Acknowledgments. Many people in the Network Planning and Host
networking team at Meta have contributed to the Entitlement pro-
gram over the years. We would like to acknowledge Steve Politis,
Rajiv Krishnamurthy, Omar Baldonado, and Gaya Nagarajan for
their support of the program. We thank our shepherd Sanjay Rao
and anonymous reviewers for their comments. Guyue Liu and Ying
Zhang are the corresponding authors.

Network Entitlement

REFERENCES

[1]

2

3

[4

[5

[6

[7

[8

[9

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Satyajeet Singh Ahuja, Varun Gupta, Vinayak Dangui, Soshant Bali, Abishek
Gopalan, Hao Zhong, Petr Lapukhoyv, Yiting Xia, and Ying Zhang. 2021. Capacity-
Efficient and Uncertainty-Resilient Backbone Network Planning with Hose. In
Proceedings of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM ’21).
Association for Computing Machinery, New York, NY, USA, 547-559.

Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. To-
wards Predictable Datacenter Networks. In Proceedings of the ACM SIGCOMM
2011 Conference. Association for Computing Machinery, New York, NY, USA,
12.

Krish Bandaru and Kestutis Patiejunas. 2017. Under the hood: Face-
book’s cold storage system. https://engineering.fb.com/2015/05/04/core-data/
under-the-hood-facebook-s-cold- storage-system/. (2017).

Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai Menache, Nikolaj Bjgrner,
Asaf Valadarsky, and Michael Schapira. 2019. TEAVAR: striking the right
utilization-availability balance in WAN traffic engineering. In Proc. ACM SIG-
COMM’19.

Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient Coflow
Scheduling with Varys. 44, 4 (2014).

Nick G. Duffield, Pawan Goyal, Albert G. Greenberg, Partho Pratim Mishra,
K. K. Ramakrishnan, and Jacobus E. van der Merwe. 1999. A Flexible Model for
Resource Management in Virtual Private Networks. In Proceedings of the ACM
SIGCOMM 1999 Conference. ACM, 95-108.

Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sen-
gupta. 2009. VL2: A Scalable and Flexible Data Center Network. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication. Association
for Computing Machinery, New York, NY, USA, 12.

Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization with software-
driven WAN. In Proc. ACM SIGCOMM’13. 15-26.

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. 2013. B4:
Experience with a globally-deployed software defined WAN. ACM SIGCOMM
Computer Communication Review 43, 4 (2013), 3—-14.

Manolis Karpathiotakis, Dino Wernli, and Milos Stojanovics. 2017. Scribe:
Transporting petabytes per hour via a distributed, buffered queueing system.
https://engineering.fb.com/2019/10/07/data- infrastructure/scribe/. (2017).

Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael Schapira, and Ankit Singla.
2017. Beyond Fat-Trees without Antennae, Mirrors, and Disco-Balls. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data Communication.
Association for Computing Machinery, New York, NY, USA.

Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinad-
huni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing Ai, Bjorn Carlin, Mihai
Amarandei-Stavila, Mathieu Robin, Aspi Siganporia, Stephen Stuart, and Amin
Vahdat. 2015. BWE: Flexible, Hierarchical Bandwidth Allocation for WAN Dis-
tributed Computing. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (SIGCOMM ’15). Association for Com-
puting Machinery, New York, NY, USA, 1-14.

Ben Letham and Sean J. Taylor. 2021. Prophet: forecasting at scale. https:
/Iresearch.facebook.com/blog/2017/02/prophet- forecasting-at-scale/. (2021).
Linux. [n. d.]. Classless Queuing Disciplines. https://tldp.ore/HOWTO/
Traffic-Control-HOWTO/classless-qdiscs.html. ([n. d.]).

Honggiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and David
Gelernter. 2014. Traffic engineering with forward fault correction. In Proc. ACM
SIGCOMM’14.

Sarang Masti. 2021. How we built a general purpose key value store for Face-
book with ZippyDB. https://engineering.fb.com/2021/08/06/core-data/zippydb/.
(2021).

Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin,
Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang,
and Sanjeev Kumar. 2014. F4: Facebook’s Warm BLOB Storage System. In
Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation (OSDI’14). USENIX Association, USA, 383-398.

Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Ion Stoica. 2012. FairCloud: Sharing the Network in
Cloud Computing. SIGCOMM Comput. Commun. Rev. 42, 4 (Aug. 2012).
Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C Mogul, Yoshio
Turner, and Jose Renato Santos. 2013. Elasticswitch: Practical work-conserving
bandwidth guarantees for cloud computing. In Proc. ACM SIGCOMM’13. 351—
362.

Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth Yocum,
and Alex C Snoeren. 2007. Cloud control with distributed rate limiting. ACM
SIGCOMM Computer Communication Review 37, 4 (2007), 337-348.

Henrique Rodrigues, Jose Renato Santos, Yoshio Turner, Paolo Soares, and Dorgi-
val Guedes. 2011. Gatekeeper: Supporting Bandwidth Guarantees for Multi-Tenant
Datacenter Networks. In Proceedings of the 3rd Conference on I/O Virtualization.

SIGCOMM 22, August 22—-26, 2022, Amsterdam, Netherlands

262

[22]

[23]
[24]

[25]

[26]

[27]

USENIX Association, USA.

Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain, Joy-
deep Sen Sarma, Raghotham Murthy, and Hao Liu. 2010. Data Warehousing and
Analytics Infrastructure at Facebook. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’10). Association
for Computing Machinery, New York, NY, USA, 1013-1020.

Wikipedia. [n. d.]. iptables. https://en.wikipedia.org/wiki/Iptables. ([n. d.]).
Yiting Xia, Ying Zhang, Zhizhen Zhong, Guanqing Yan, Chiun Lin Lim, Satya-
jeet Singh Ahuja, Soshant Bali, Alexander Nikolaidis, Kimia Ghobadi, and Manya
Ghobadi. 2021. A Social Network Under Social Distancing: Risk-Driven Back-
bone Management During COVID-19 and Beyond. In /8th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21). 217-231.

Di Xie, Ning Ding, Y. Charlie Hu, and Ramana Kompella. 2012. The Only
Constant is Change: Incorporating Time-Varying Network Reservations in Data
Centers. In Proceedings of the ACM SIGCOMM 2012 Conference (SIGCOMM
’12). Association for Computing Machinery, New York, NY, USA, 199-210.

Han Zhang, Xingang Shi, Xia Yin, Jilong Wang, Zhiliang Wang, Yingya Guo, and
Tian Lan. 2021. Boosting bandwidth availability over inter-DC WAN. In Proc.
ACM CoNEXT’21.

Yufei Zhu. 2015. Serving Facebook Multifeed: Efficiency, performance gains
through redesign. https://engineering.fb.com/2015/03/10/production-engineering/
serving-facebook-multifeed-efficiency- performance- gains- through-redesign/.
(2015).

https://engineering.fb.com/2015/05/04/core-data/under-the-hood-facebook-s-cold-storage-system/
https://engineering.fb.com/2015/05/04/core-data/under-the-hood-facebook-s-cold-storage-system/
https://engineering.fb.com/2019/10/07/data-infrastructure/scribe/
https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/
https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/
https://tldp.org/HOWTO/Traffic-Control-HOWTO/classless-qdiscs.html
https://tldp.org/HOWTO/Traffic-Control-HOWTO/classless-qdiscs.html
https://engineering.fb.com/2021/08/06/core-data/zippydb/
https://en.wikipedia.org/wiki/Iptables
https://engineering.fb.com/2015/03/10/production-engineering/serving-facebook-multifeed-efficiency-performance-gains-through-redesign/
https://engineering.fb.com/2015/03/10/production-engineering/serving-facebook-multifeed-efficiency-performance-gains-through-redesign/

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

APPENDIX
Appendices are supporting material that has not been peer-reviewed.
A APPROVAL ALGORITHM

Algorithm 2 presents our contract approval algorithm that includes
two main routines: Hose_Approval and Pipe_Approval.

Algorithm 2 Contract Approval Algorithm

Input: topo: The backbone network topology with network capacity and fiber reliabil-
ity
Input: contract: The SLO target and a list of entitlement requests
Input: hose_requests: The product demand forecasts in the hose format.
Output: final_hose_approvals: A list of approved hose requests.
1: function HOSE_APPROVAL(topo, contract, hose_requests)
2: init_hose_approvals = 0

3: > call Demand Generation Service to get representative pipe requests

4: pipe_requests = GEN_DEMAND (topo, hose_requests)

5: for each request r € pipe_requests do

6: pipe_approval = PIPE_APPROVAL(r, topo, contract)

7: > aggregate pipe approvals into the final hose approvals

8: init_hose_approvals = sum up ingress/egress pipe_approval for each
hose

9: final_hose_approvals = min(init_hose_approvals)

10: return final_hose_approvals

11:

12: function PIPE_APPROVAL(pipe_request, topo, contract)
13: pipe_approvals = 0
14: tmp_requests = 0

15: > enforce the priority between different QoS classes

16: for each QoS class cos € contract sorted by the priority from high to low do

17: cos_pipes = COS_PIPES (cos, pipe_request, tmp_requests)

18: > call Risk Simulation System to assess risks

19: availability_curves = ASSESS_RISK(cos_pipes, topo)

20: tmp_approvals = get approval for each cos_pipe in
availability_curves based on the SLO target

21: > aggregate pipe approvals and requests

22: MERGE_APPS (cos, tmp_approvals, pipe_approvals)

23: MERGE_REQS(cos, tmp_requests, pipe_request)

24: return pipe_approvals

263

S.Ahuja et al.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Meta's Service Ontology
	2.2 Misbehaving Services Cause Disruptions

	3 WAN Network Entitlement
	3.1 Key Challenges
	3.2 Entitlement Process Overview

	4 Establish A Contract
	4.1 Service Demand Forecast
	4.2 Hose-based Contract Representation
	4.3 Entitlement Contract Approval

	5 Runtime Enforcement
	5.1 Architecture Evolution
	5.2 How Much to Remark
	5.3 What to Remark

	6 Real-world Enforcement Tests
	6.1 Network Stats
	6.2 Application Stats

	7 Evaluation
	7.1 Demand Forecast Accuracy
	7.2 Benefit of Segmented Hose
	7.3 Bandwidth Approval Tradeoffs
	7.4 Effectiveness of Enforcement

	8 Future Directions
	9 Related Work
	10 Conclusion
	References
	A Approval Algorithm

