
LemonNFV: Consolidating Heterogeneous Network Functions at Line Speed

Hao Li1, Yihan Dang1, Guangda Sun1,2, Guyue Liu3, Danfeng Shan1, Peng Zhang1

1Xi’an Jiaotong University 2National University of Singapore 3New York University Shanghai

Abstract
NFV has entered into a new era that heterogeneous frame-

works coexist. NFs built upon those frameworks are thus not

interoperable, obstructing operators from getting the best of

breed. Traditional interoperation solutions either incur large

overhead, e.g., virtualizing NFs into containers, or require

huge code modification, e.g., rewriting NFs with specific ab-

stractions. We present LemonNFV, a novel NFV framework

that can consolidate heterogeneous NFs without code modifi-

cation. LemonNFV loads NFs into a single process down to

the binary level, schedules them using an intercepted I/O, and

isolates them with the help of a restricted memory allocator.

Experiments show that LemonNFV can consolidate 5 com-

plex NFs without modifying the native code while achieving

comparable performance to the ideal and state-of-the-art pure

consolidation approaches with only 0.7–4.3% overhead.

1 Introduction

The past decade has witnessed the flourish of Network Func-

tion Virtualization (NFV) research, with the goal of replacing

hardware middleboxes with software network functions (NFs)

running on commodity servers. Prior research efforts have led

to a plethora of NFV frameworks focusing on various aspects,

including performance optimization [30, 33, 35, 49], program-

ming models [34, 41], resource management [51, 60], and

more recently security [43, 52, 54]. Since there are no conven-

tional and widely-adopted interfaces, these NFV frameworks

are unsurprisingly implemented in heterogeneous ways, with

different libraries (e.g., DPDK [5], netmap [57]), languages

(e.g., C, C++, Rust), and abstractions (e.g., Click element [37],

BESS module [30]).

NFs built upon these heterogeneous NFV frameworks are

not interoperable, which exposes two hard choices for users

in actual deployment. The first choice is asking operators

to learn, deploy, and maintain multiple frameworks to serve

different purposes. The second choice is picking one frame-

work and asking the developers to add extra functionalities

by reinventing the wheel. The former choice dramatically

increases the cost of operation, and the latter choice requires

substantial engineering effort and is error-prone. This reality

raises a timely and important question: can heterogeneous
NFs interoperate without modifying the code?

To answer this question, the first natural candidate solution

is using virtualization. Under this model, each NF runs in

a virtual machine or a container on one core, and packets

are steered across cores to chain multiple NFs. While this

approach hides the heterogeneity of NFs under standardized

virtualization interfaces, it incurs prohibitive performance

overhead when chaining multiple NFs [33, 49]. The overhead

stems from three main sources: virtualized components, cache

misses, and context switches (details in §2.1). Despite the

efforts of various lightweight virtualization techniques [39,

56,68], these overheads cannot be fully eliminated. As a result,

this virtualization approach fundamentally cannot achieve the

line speed, one of the key requirements of NFV deployment.

The second candidate solution is using consolidation. This

model implements NFs as software modules and runs them

in the same process. NFs are chained through function calls

and scheduled in a run-to-completion (RTC) mode, i.e., once

a packet is received by an NF, the NF continues processing it

until finishes. By eliminating cache miss and context switch

overheads, this approach ensures the line-rate processing and

has been adopted by existing high-performance NFV frame-

works such as Metron [35] and BESS [30]. While consolida-

tion works well for NFs under the same framework, it seems

unlikely to be applied to heterogeneous NFs without modi-

fying the code due to three key challenges across loading,

scheduling, and memory management.

• How to launch heterogeneous NFs in one process?
Launching NFs written with different frameworks and

languages into the same process could result in vari-

ous conflicts (e.g., dependencies, functions, variables).

A potential solution that manually modifying the code

to resolve each conflict could be tedious.

• How to chain multiple NFs with separate control flows
within a process? Each NF has its own control flow



which often includes an infinite loop of packet process-

ing. Chaining these separate control flows requires lo-

cating new entry points and correctly schedule them to

process packets.

• How to isolate memory of multiple NFs within a process?
NFs running in the same process share the same stack

and heap, without memory isolation. This brings security

concerns when chaining multiple NFs from different and

possibly untrusted vendors. A previous solution that

rewrites NFs with safe programming languages would

incur large porting efforts.

In this work, we propose LemonNFV, an NFV framework

that enables consolidating heterogeneous NFs without modi-

fying the code. To address the above challenges, LemonNFV

provides three abstractions for NFs: the compiled binary, the

scheduling entry points, and the memory allocation interfaces.

The key point of these abstractions is that they (1) are es-

sential and sufficient for making NFs interoperable, and (2)

can be easily adopted to NFs without much coding efforts by

capturing the natural homogeneity that already exists in all

NF implementations. By transforming NFs into such LEast
Modified network functiONs (LEMONs), LemonNFV then

implements a set of utilities upon those abstractions that load,

execute and manage NFs inside a process. Concretely, we

make the following contributions in designing LemonNFV.

Loading via LEMON Binary (§4.1 and §4.4). We view each

NF as a software module and leverage the standard binary

format to load them. The binary hides the complexity of NFs

written in different languages and/or with conflicting names.

To further enable dynamic chaining and NF migration, we

build a LEMON loader to specify memory layout and resolve

dependency conflicts, both of which are not supported by

existing loaders (e.g., ld.so).

Chaining via Schedulable I/O (§4.2). We observe that packet

I/O could be an ideal scheduling point where an NF’s pro-

cessing logic starts and ends. Based on this observation, we

provide unified I/O interfaces as entry points for inter-NF

scheduling. These interfaces can replace existing NFs’ I/O

interfaces, which are usually built on top of several common

packet I/O libraries, such as DPDK, libpcap and netmap. To

chain multiple NFs inside one process, we provide a scheduler
to correctly switch between different NF control flows.

Isolation via Restricted Memory Interfaces (§4.3). We use

a restricted allocator to set explicit NF boundaries by creat-

ing private stack and heap for each NF, which can replace the

native memory allocation interfaces like malloc and its vari-

ants. To isolate different NFs in the process, we implement an

isolator that leverages hardware-aided technique (Intel PKU)

to realize efficient intra-process memory isolation 1.

We evaluate LemonNFV with real NFs and traffic (§6). The

1Currently, our isolation model focuses on memory isolation only and

does not support control flow integrity, state sharing and packet isolation as

in related works [31, 52, 66]. See §4.3 and §7 for details.

results show that LemonNFV can (1) consolidate 5 complex

NFs without code modification – even they are implemented

with different frameworks and/or languages; (2) realize com-

parable performance to the ideal and state-of-the-art consoli-

dation approaches with only 0.7–4.3% overhead of isolation.

Ethics: This work does not raise any ethical issues.

2 Motivation

In this section we explain why neither virtualization (§2.1)

nor existing consolidation techniques (§2.2) can address the

need of heterogeneous NF interoperation.

2.1 Virtualization is Slow

Figure 1a shows the three types of performance overhead

incurred by virtualization approaches. (V1) Heavyweight com-
ponents: Packets may need to go through all levels of vir-

tualization components: host OS, VM hypervisor, guest OS

and software switch. Each of the components brings a non-

negligible overhead since they may run protocol stacks and

perform queueing. (V2) Cache misses: If the NF instances

are deployed on separate cores, passing packets across cores

will be inevitable, in which case accessing each packet will

become LLC or DRAM bounded. Moreover, passing packets

across cores is often achieved by software switches, requiring

frequent enqueuing and dequeuing when the NFs send and re-

ceive packets. (V3) Context switches: Scheduling will happen

if there are multiple NF instances pinned to a single physical

core, which would result in extra switching overhead.

Researchers have been leveraging the emerging lightweight

virtualization techniques to improve the performance of virtu-

alization NFV systems. By reducing full-fledged VMs into

more lightweight environments, such as containers [21,61,63,

68], unikernels [39,46,69], and even processes [40,42,56,76],

the virtualization overhead, i.e., V1, is greatly reduced or elim-

inated, yet still preserving V2 and V3.

In fact, running NFs as separate instances makes it impossi-

ble to reduce V2 and V3 at the same time. Pinning instances to

dedicated cores (e.g., OpenNetVM [76], NFP [64]) eliminates

the overhead of context switches (-V3), but forces packets

to be delivered over shared memory and results in L1/L2

cache misses (+V2). On the other hand, compacting instances

on a single core (e.g., Quadrant [68], EdgeOS [56]) would

reduce the cache misses on packets (-V2), while frequent

context switches can lead to much more system calls and

TLB misses (+V3). Therefore, we reach a conclusion that

virtualization-based NFV frameworks can hardly meet line-

rate (i.e., 100/400Gbps) processing requirements because of

its inherent overhead.



Host OS

Hypervisor
Software Switch

Shared Memory Queue

VM VM VM
NF1 NF2 NF3

Cache
packets

Cache
packets

Core 0 Core 1

Hardware NIC

context switch

heavyweight
components

miss hit miss

(a) A virtualization approach that runs NFs as separate in-

stances. Red arrows indicate the major source of overhead,

and grey boxes are components that can be optimized out.

Process

NF2NF1 NF3
DPDK libpcap netmap

Core 0

Shared Heap

Hardware NIC

infinite loop

name conflicts

illegal access

(b) A consolidation approach that executes NFs in a single

process. Black arrows are the ideal workflow while the red

ones signify the obstacles when the NFs are heterogeneous.

Figure 1: The virtualization approach is slow, while the consolidation cannot handle the conflicts between heterogeneous NFs.

2.2 Consolidating Heterogeneous NFs is Hard

Consolidation, on the other hand, avoids all the extra overhead

from the virtualization approaches by eliminating the bound-

aries between NFs [17, 30, 35, 52, 61]. Under this model, the

SFC is deployed in one process, i.e., no V1, and NF instances

are executed in an RTC manner i.e., no V2 and V3, as shown

in Figure 1b. However, it introduces even more challenges

when trying to consolidate heterogeneous NFs.

Challenge 1: NFs cannot be loaded. NFs are independently

developed with different frameworks and abstractions. As

such, when putting them together in the same process, they

may conflict with each other in terms of dependencies, func-

tions and variables. For example, two NFs may define global

data structures with the same name, while simply linking their

source code would raise a multi-definition error. Things get

more complex if NFs are written in different languages.

Naive solution: A naive solution for loading NFs into a

single process includes three time-consuming tasks. First, op-

erators have to check all symbols exposed by NFs to locate the

conflicts. Second, they should manually resolve the conflict-

ing symbols, which however is not always a feasible task, con-

sidering the conflicts that may happen between closed-source

libraries. Third, they need to reconstruct other code with the

resolved name, which usually requires deep understanding

of the whole NF codebase. Despite the above tedious efforts,

manual resolution can never work for the cross-language NFs

or dynamic SFC updating without halt.

Challenge 2: NFs cannot be scheduled. The workflow of

each NF is driven by an infinite loop of receiving and sending

packets, i.e., processing packets after receiving them, and

receiving more after sending the processed ones. As a result,

an NF will take up a core forever once it starts running, and the

downstream NFs in the same process will never be scheduled.

Naive solution: To break the infinite loop inside each NF,

one could extract the packet processing logic of each NF, and

combine them together to form a synthesized SFC [17, 35,

36]. However, the packet processing logic is closely coupled

with NF-specific packet and state abstractions, and combining

them results in a large amount of code modification. For

example, Snort [10] leverages its unique Data AcQuisition

Library (DAQ) to receive packets and fill the metadata like

timestamp, protocol annotation, etc. Such packet abstraction

is incompatible with the packet abstraction under Click [37].

As a result, composing a synthesized SFC of Snort→Click

requires to transform the packets as well as all metadata from

the DAQ abstraction into the Click abstraction, and vise versa

for Click→Snort.

Challenge 3: NFs may affect each other. Being in the same

process, all NFs share the same stack and heap. In this way,

operators are not able to restrict any memory operations of al-

location, read and write, and thus lose the control over illegal

accesses, i.e., each NF can (unintentionally) modify others’

data and make their states inconsistent. For example in Fig-

ure 1b, NF1 (yellow) can silently modify the data (red arrow)

allocated by NF2 (green).

Naive solution: Consolidation frameworks often choose

to trust the NFs under the same process since they come

from the same vendor. However, trust cannot be granted when

it comes to heterogeneous NFs across vendors. Using safe

language, e.g., Rust in NetBricks [52], to rewrite the NFs is

a feasible option, but it’s not practical given the large body

of existing NFs and limited popularity of the safe language.

Formal verification on NFs [72, 74, 75] on the other hand

requires verification expertise and sometimes also forces NFs

to use certain APIs [73].

3 LemonNFV Overview

The heterogeneous NF consolidation is challenging because

NFs in the same process share the namespace, the control

flow, and the memory. In this section, we introduce the key

abstractions for breaking such sharing, and explain why they

can be easily adopted without code modification (§3.1). We



Unmodified NF

rcv_pkt snd_pkt

v_rcv_pkt v_snd_pkt

malloc free

c_malloc c_free

shared lib

Schedulable I/O

Restricted Allocator

ELF format

LEMON Binary

read packets
from memory

jump to the
next LEMON

allocate/free memory
from private heap

Figure 2: A LEMON with unified abstractions of binary, I/O

and memory interfaces. Grey boxes are the common points

existed in NFs, and the blue boxes modify/leverage their se-

mantics for providing the unified behaviors (red annotations).

then overview the workflow of LemonNFV that implements

a set of utilities upon those abstractions, including the loader,

scheduler, isolator and the migration manager, to load, execute

and manage LEMONs within the same process (§3.2). We

finally discuss the ongoing challenges of LemonNFV (§3.3),

which will be addressed in the next section.

3.1 Unified LEMON Abstractions
A LEMON carries an unmodified NF with its own namespace,

control flow and memory, each of which could conflict with

other LEMONs inside the process. The key challenge here

is to decide the proper level to resolve the conflicts. Typical

solutions either choose the lowest level for avoiding the code

modification, i.e., packaging NFs into OS-level containers, or

operate at the highest level for ideal performance, i.e., rewrit-

ing NFs’ source code, neither of which can fully address our

goal.

Instead, LemonNFV aims to resolve such conflicts with

three middle-level abstractions: a binary that isolates the

namespaces of each NF, a set of I/O interfaces that decou-

ple the packet processing logic from infinite loop, and a set

of memory interfaces that restrict the memory operations.

These abstractions are high-level enough for resolving the

underlying conflicts, while also low-level enough to hide the

heterogeneity. In fact, there exists natural homogeneity in

all NFs’ implementation, and by leveraging it, LemonNFV

can equip any NF with the proposed abstractions by a simple

interception, i.e., without code modification.

LEMON binary: wrapping the namespace. Simply putting

all NFs’ code together usually does not compile, because the

independent-developed NFs might define variables, functions

and dependencies with the same name but different seman-

tics, which would cause name conflicts. Instead of manually

wrapping an NF into an isolated namespace, e.g., packing it

to a C++ class with private members, we observe that the

compiled binary naturally separates the namespaces of each

software module, and the conflicts can be resolved through

the symbol resolution process when loading the binary.

Natural homogeneity: ELF is the standard format for ex-

ecutables and shared libraries under Linux, which reveals a

chance for LemonNFV to package each NF as a software mod-

ule without modifying its native code but through a simple

recompilation (right part in Figure 2).

Schedulable I/O: creating entry points. The packet process-

ing logic of NFs are usually implemented as an infinite loop,

which is not schedulable. Nevertheless, we observe that the

I/O behaviors reveal the natural boundaries between NFs. To

this end, we design a new set of I/O in substitution for the

original, which creates explicit entry points of each NF for

scheduling: for the packet receiving function, it could read

packets from a shared memory region instead of the physical

NIC; for packet sending, it could jump out of the infinite loop

after pushing the packets back to specific queues on shared

memory, according to the output port of the NF.

Natural homogeneity: NFs are built on a handful of I/O

libraries like DPDK and libpcap, which means we can im-

plement the schedulable I/O by only intercepting limited func-

tions of these libraries (lower part in Figure 2).

Restricted allocator: separating memory domains. To re-

alize the isolation requirement, one should create isolated

memory regions for each of the NFs, even with the same pro-

cess. While not all NFs have the compilation support from

safe languages like Rust, the feasible solution is to create sep-

arate (instead of interleaved) memory domains for each NF,

and protect those domains with bound guard [67] or privilege

management [14, 53].

Natural homogeneity: All NFs rely on the native allocator,

which only provides limited functions like malloc, realloc
and free. That is, LemonNFV can override the native allo-

cator with the restricted allocator, which enforces that the

dynamic memory allocation in a LEMON takes place in its

own heap (upper part in Figure 2).

3.2 LemonNFV Workflow
Having the above unified LEMON abstractions, LemonNFV

implements several key components to build, execute and

manage LEMONs. As shown in Figure 3, an SFC is a pro-

cess (dashed rectangle) that runs two types of threads: hy-

pervisor (red) and worker (gray). The hypervisor consists of

two components: the LEMON loader that loads LEMONs

and intercepts the original allocator and I/O functions, and

the migration manager that migrates the LEMON to another

worker, SFC, or server. The worker implements the tram-

polines, which process the packets from the hardware NIC,

schedule a chain of LEMONs with virtualized I/O while en-

suring their isolation. There is also a LemonNFV controller,

relaying the user commands like LEMON loading to the hy-

pervisors, which can be deployed on a remote server.



Hypervisor

LEMON1 LEMON2 LEMON3

Trampolines

Hardware NIC

LemonNFV Controller

LEMON Loader (§4.1) Migration Manager (§4.4)

LEMON Scheduler (§4.2) LEMON Isolator (§4.3)

1 Load and initialize

2 3 4 5 3

1 Receive packet 6 Send packet

2
N

ot
ify

tra
m

po
lin

es

Figure 3: LemonNFV workflow, where a dashed rectangle

represents a process (SFC) with two threads: a hypervisor

(red) and a worker (grey). �–� illustrate how a packet being

processed; and �–� are for runtime SFC changing.

Loading a LEMON. Each LEMON carries an unmodified

NF, as well as its dependent libraries and configuration files.

To this end, the NF developers are required to recompile the

NFs into shared libraries, which only needs a few lines of

modification in the make rules (See §6.2). This task can also

be done by the operators if the target NF is open-source. Then,

the operator should fetch all dependencies of the LEMON,

pass their paths to the loader, and specify the total amount

of memory needed. With these information, the LEMON

loader would allocate the memory, load the code and variable

segments, resolve the potential conflicts, and grant the corre-

sponding privileges. The user can then consolidate an SFC

by providing the path and interconnection of each LEMON

in an interactive terminal.

Chaining and isolating LEMONs. Inside each worker,

LemonNFV executes a chain of LEMONs in the RTC way.

When receiving a (batch of) packet(s) from NIC (�), the

LEMON scheduler in the trampolines will pass the packet to

the first LEMON of the SFC, by calling its schedulable packet-

receiving function (�). After the processing in LEMON1, the

schedulable packet-sending function would transfer the con-

trol flow back to the trampolines (�), which would trigger the

next LEMON, i.e., LEMON2 (�). When it reaches the end of

the chain (	), the trampolines send the packet(s) back to NIC

(�). All of �–� are done within a single thread, thus will

not produce any inter-core communication or thread context

switch. When an SFC wants to scale out its performance,

LemonNFV can duplicate the worker into more cores, and

dispatch the flows using hardware NIC.

The trampolines also ensure the LEMON isolation through

above chaining process. Specifically, the LEMON isolator

would adjust the memory access privileges of each LEMON,

e.g., when executing LEMON2, the memory domains of

LEMON1 and LEMON3 should be protected.

Managing LEMONs in runtime. Consider a simple man-

agement task that attaching LEMON3 to the end of current

SFC. The hypervisor would first load and initialize LEMON3

(�) using the LEMON loader. After that, it will notify the

trampolines with the new LEMON, i.e., the packet receiving

function of LEMON3 (
). Finally, the trampolines will exe-

cute LEMON3 next time a packet leaves LEMON2 (�). Note

that the hypervisor is in an individual thread, which means �
can be done asynchronously without halting SFC. 
 is also

lightweight, as the hypervisor only needs to notify the tram-

polines with the new entry point, which is a rare operation

and would only halt the SFC for a negligible moment.

3.3 Ongoing Challenges

While making the LEMON interoperation a possible vision,

LemonNFV is still faced with several practical challenges.

Isolated LEMON namespace. LEMON binary wraps the

namespaces of each NF, but the name conflicts between multi-

ple binaries still needs to be resolved. This is the responsibility

of the LEMON loader, while the OS-default loader cannot

suffice, because it tends to reuse the dependencies for all

LEMONs.

Correct LEMON scheduling. Having the schedulable I/O,

the LEMON scheduler in the trampolines needs to further

address the following concerns for correctly scheduling the

LEMONs. (1) how to efficiently switch LEMONs; (2) how

to properly execute the logic other than the packet process-

ing, e.g., initialization; and (3) how to correctly handle the

complex I/O behaviors like asynchronous Rx and Tx.

Efficient memory isolation. The restricted memory allocator

guarantees the separate memory domains for each LEMON.

However, it is still unclear how the LEMON isolator restricts

the memory accesses to the legal areas. The key challenge

here is to isolate those memory domains without compromis-

ing too much performance.

Flexible LEMON migration. NF migration is a critical re-

quirement in NFV systems. Even with the help of the LEMON

loader, it is still unclear for the migration manager to migrate

the LEMONs to other workers, SFCs or even servers. The key

challenge here is that the LEMON loader can only handle a

LEMON as a whole, while the inner data structures (i.e., NF

states) of a LEMON might need to be partially migrated to

another core or re-accessed in a different process for intra- or

inter-server load balancing.

4 Detailed Design of LemonNFV

In this section, we discuss in details how LEMONs are

loaded (§4.1), scheduled (§4.2), isolated (4.3) and mi-

grated (§4.4) using the unified abstractions of LEMON.



4.1 Loading the LEMONs

Given an ELF binary, the loader is responsible to allocate the

memory for the executable, copy the segments to the corre-

sponding memory regions, resolve the external symbols, and

finally call the constructors. While Linux has offered a mature

toolchain for loading the ELF file at runtime, i.e., dl-family

functions, they are ill-suited for serving as the LEMON loader.

In the following, we explain the specific requirements when

loading a LEMON, and present our solution for the LEMON

loader.

Dependency isolation. The OS loader, i.e., ld.so with

dlopen, attempts to reuse the libraries that have been al-

ready loaded for saving the memory and improving instruc-

tion cache affinity. However, this would cause dirty access of

common libraries if multiple LEMONs depend on them.

In LemonNFV, the LEMON loader views each NF and its

dependencies as a sandbox, and will load the dependencies

no matter whether other LEMONs have already loaded them.

For example, each LEMON will load its own libc, such that

they will not share the global variables like optarg. so that

Targeted symbol resolution. While loading, lots of functions

in LEMONs should be intercepted to the customized versions,

e.g., the DPDK I/O to the schedulable I/O, the native malloc
to the restricted malloc. The common solution to this task

is LD_PRELOAD, which instructs the loader to first lookup the

preload libraries when resolving every symbol of the exe-

cutable. However, LD_PRELOAD redirects all symbols with

the same name, while LEMONs and trampolines should use

different versions. For example, trampolines call rx_burst
to receive packets from NIC, which should not be resolved to

the schedulable version as in LEMONs. Besides, LEMONs

may depend on different versions of the libraries, and the

intercepted functions with the same name also need vary to

those semantics.

LemonNFV implements a symbol resolution mechanism

tailored for loading LEMONs, which allows the trampolines

and each LEMON to specify their own preload libraries, en-

abling different semantics for symbols of the same name.

Consistent loading address. The Linux loader cannot man-

ually specify the loading address. Instead, the recent Linux

kernels enable the random address loading, e.g., ASLR [1],

mostly due to the security reason. Such random loading would

disable the ability of reloading a LEMON, because all pointers

in the reloaded LEMON would become invalid. This feature

is critical for fault recovery and LEMON migration.

To this end, the LemonNFV process reserves the same

virtual address space, which is partitioned into fixed-size slots.

the LEMON loader would load each LEMON to its unique
slot, and allocate the fixed address regions for the private

stack, heap and dependencies. As a result, all the pointers

(expect packet pointers) in a LEMON snapshot would remain

valid even being reloaded or migrated to another process.

1. While True:
2. Receive packets
3. Switch stack to M

4. Send packets
5. EndWhile

Trampolines (T)
1. Initialization
2. While True:
3. Call rx_burst()
4. Process the packet
5. Call tx_burst()
6. Fill the packets
7. Switch stack to T
8. Return
9. EndWhile

LEMON (M)

Loop back to Line 2

Loop back to Line 3

(a) Scheduling between the trampolines and the LEMON.

1. Load LEMON
2. Save the stack
3. If not init:
4. Execute LEMON

5. init← true
6. EndIf
7. Notify trampolines

Hypervisor (H)
1. Initialization
2. While True:
3. Call rx_burst()
4. If not init:
5. Switch stack to H
6. Fill the packets
7. Return
8. Process the packet
9. Call tx_burst()
10. EndWhile

LEMON (M)

(b) Initialization with the hypervisor.

Figure 4: Scheduling LEMONs with the schedulable I/O and

private stacks. Solid arrows indicate the executing paths, and

dashed lines are the function/stack transitions. The blue paths

are executed by the working thread, and the red ones are from

the hypervisor thread. Shadowed texts are the pseudocode of

tx_burst and rx_burst.

4.2 Scheduling the LEMONs
A typical NF implementation consists of four stages: (1) the

NF initializes its own data structures and hardware; then it

starts an infinite loop which (2) receives packets using a func-

tion like rx_burst(pkts); (3) processes the packets; and (4)

sends the packets out using a function like tx_burst(pkts).
The LEMON I/O interfaces unify the way for LEMONs to

fetch and send packets, i.e., stage 2 and stage 4. Specifically,

the LemonNFV trampolines are responsible to communicate

with the hardware NIC. And the “NIC” in the LEMON is

actually a memory region that stores the packets. As a result,

rx_burst should fill pkts (the pointers of packets) with the

packets from the trampolines; and tx_burst should fill pkts
back to trampolines for the downstream LEMONs.

Having those basic I/O operations, how to schedule the

LEMONs such that the packets can flow through them as if

they were chained together will be our focus here.

Scheduling LEMONs with schedulable I/O. Each NF has

its own control flow, from main function to the infinite loop of

packet processing. The LEMON scheduler needs to cooperate

with those control flows to properly jump into and out from

the LEMON execution.

To this end, LemonNFV creates private stack for each

LEMON, making its control flow separated from the trampo-

lines and one another. Specifically, LemonNFV allocates a

dedicated memory region for each LEMON as its stack, and



the trampolines maintain the corresponding stack pointers

(i.e., SP and BP registers). In this way, the LEMON schedul-

ing can be simply implemented as saving the current states

of registers (stack pointers and other callee-saved registers)

and restoring the previously saved ones of the target LEMON.

This process operates purely in the user space, thus incurs

much less overhead than the context switch between processes

or threads, which would trap into kernel and flush TLBs. We

implement the above stack switch logic in the packet sending

functions, because each time the NF is sending the current

batch of packets out of the NIC, the control flow should move

to the next NF in the SFC.

We use Figure 4a to illustrate how the scheduling works.

Assume the SFC has only one LEMON, which has processed

a batch of packets and is sending them out, i.e., calling (the

schedulable) tx_burst in Line 5 of M. After filling the pack-

ets, the execution stack is saved and switched to the tram-

polines (from Line 7 of M to Line 3 of T). The trampolines

then send the packets to the NIC (Line 4 of T). In the next

loop it receives a new batch of packets (Line 2 of T) and

schedules the LEMON again (Line 3 of T), which will jump

back to Line 7 of M. The LEMON will continue to receive

and process the packets from the trampolines, i.e., Line 8–9,

3–4 of M, until it is scheduled out, i.e., tx_burst is called

again. Any additional logic besides Line 4 (e.g., profiling after

sending packets) will also be executed at this moment.

Handling the logic other than packet processing. The hyper-

visor needs to take care of the LEMON initialization, which,

like the packet processing logic, has no explicit boundary in

the NF’s code. To this end, we view the initialization as the

logics from the first line of main function to the very first
time the rx_burst is called, which means all preparations

for packet processing have been done. We use Figure 4b to

depict such process. The hypervisor thread (red path) loads

the LEMON, saves its stack and executes the LEMON (Line

1–4 of H). After LEMON is initialized (Line 1 of M), it will

eventually call (the virtualized) rx_burst (Line 3 of M). For

the very first time it is called (i.e., init==0), the LEMON

should switch back to hypervisor’s logic, and the hypervisor

will notify the trampolines that the initialization is done. The

trampolines will execute the LEMON from the saved stack

(Line 6 of M) next time it is scheduled.

Except for the initialization, NFs may also include logic

for event logging and runtime configuration. These routines

are usually conducted in individual threads. See Appendix A

for scheduling a LEMON with such threads.

Complex I/O behaviors. The above scheduling assumes the

NFs call the packet I/O in a synchronized way, i.e., receiving

(Rx) and sending (Tx) once per batch, while NFs can also

invoke less Rx and more Tx (e.g., multicast), or more Rx and

less Tx (e.g., packet buffering). The current scheduling is

based on Tx, thus can still handle the former case, and we

extend the virtualized Rx I/O to deal with the latter. To be

specific, we add a flag in virtualized Rx function to check

whether it is called for the first time in this batch. If not, the

Tx function is not called, which means this LEMON buffers

or drops all packets, and blocks the downstream LEMONs.

In such case, the trampolines should continue to receive the

next batch instead of scheduling the next LEMON, ensuring

correctness of NFs that buffer packets (e.g., Reframer [28]).

4.3 Isolating the LEMONs

LemonNFV provides each LEMON with a separate memory

domain via the custom allocators, so that the legal region a

LEMON can access is bounded. However, achieving this is

far from sufficient to isolate each LEMON from each other,

because the illegal accesses are only defined but not prevented.

We now discuss how LemonNFV checks illegal memory ac-

cesses efficiently. In the following, we first present the threat

model of LEMON isolation, then introduce two software fault
isolation (SFI) techniques to sandbox the memory accesses.

After making our design choice, we present how LemonNFV

realizes the LEMON isolation in runtime.

Threat model. LemonNFV isolates the SFCs from different

tenants with processes. For each process, LemonNFV allo-

cates two virtual functions (VFs), i.e., NICs virtualized by

SR-IOV [15], which provide almost the same performance

compared to the physical NIC. Given such strict isolation be-

tween SFCs, we only need to take care the isolation between

LEMONs along the SFC, i.e., the intra-process isolation.

We assume each NF has its own packet processing logic,

which are expected to be independent of the others. That is,

even in the same process/thread, the data and states of NFs are

strictly independent. This assumption disables most commu-

nications between NFs, and thus is weaker than NetBricks’s

threat model that supports state sharing [52]. However, we

argue that this assumption is actually aligned with the case

when chaining physical middleboxes, where the internal states

are unavailable to external NFs, and packets are the only in-

formation that can be exchanged between NFs.

We assume the trampolines and hypervisor are written with

care, while NFs are written in a negligent way that they might

illegally modify the data, e.g., overwrite the state in other NFs

or hypervisor. Such bad operations can happen in either NF

itself, e.g., *(bad_addr)=1, or the libraries it depends, e.g.,
memset(good_addr,0,bad_size).

Two design options. The above threat model falls into the

SFI area, where the most classical implementation is to check

the bound of each memory write [38,67,71], e.g., *p=1 would

be modified into if(p>L&&p<H) *p=1 to ensure p is always

within its own memory region (L,H). Its performance is de-

termined by (1) the number of the legal regions, since each

instrumentation must check all these regions, and (2) the num-

ber of memory access statements, which equals to the number

of instrumentation.



Recent studies advocate to leverage hardware-aided tech-

niques to realize SFI [31,45,66]. To be specific, they partition

the memory into domains, and a certain software module can

only access its legal domains. When switching to another

software module, this method has to change the legality of

the domains. As such, its runtime overhead is mainly deter-

mined by the number of domains. Another defect of domain

switching is that it restricts the number of domains due to the

limitation of hardware.

Our design decision. Bounds checking would incur unaccept-

able runtime overhead for realizing LEMON isolation for the

following reasons. First, the legal regions of a LEMON, e.g.,
code, stack and heap, are separate, making each instrumenta-

tion quite costly. Second, the number of memory access state-

ments could be large for NFs like encryption, which further

lowers the performance. To make the performance penalty

clear, we implement an extra compiling pass in LLVM that

injects bound checking before every memory write at the IR

level. We then prototype three typical NFs including NAT,

firewall and IDS, and by chaining them into an SFC, we find

that the isolated SFC is in average 24% slower than the orig-

inal one. Such penalty is usually unacceptable for realizing

the wire-speed processing.

On the contrary, we find domain switching is quite suitable

for LEMON isolation. Recall the threat model that LEMONs

do not share states between each other. That is, each LEMON

can be packaged into a disjoint domain, such that the number

of domain switching is actually the length of SFC, which is

fixed and stable no matter how complex a LEMON is. For the

limitation on number of domains, it should still be sufficient

for LEMON isolation, since the length of SFC is usually small,

i.e., less than 10 for most real-world cases [4]. As a result,

the domain switching approach is preferred to realize SFI

between LEMONs.

Among the others like VMFUNC that require code modifi-

cation [38, 45], PKU has been viewed as the fastest domain

switching approach and requires little modification on exist-

ing code [31, 66]. PKU uses the spare four bits in each page

table entry to partition memory into 16 domains, and specifies

the access restrictions for each domain by a pkey. In doing so,

the protection can be naturally guaranteed when accessing the

page table, and thus incurs zero extra cost in runtime. More

importantly, the operation of domain-switching, i.e., writing

the permissions to pkeys, purely works in userspace and only

incurs negligible overhead, i.e., less than 100 cycles.

Isolating LEMONs with PKU. Inside the process, Lemon-

NFV specifies one pkey for each LEMON. In runtime, when

a LEMON is scheduled by the trampolines, LemonNFV en-

ables its pkey to grant the access rights to its own domain, i.e.,
its own stack, heap and data segments, and disables the ac-

cess to any other domain. Since the switching happens when

scheduling LEMONs, the switch logic is embedded into the

schedulable I/O for each LEMON.

Consider a simple example with two LEMONs, M1 and

M2. The trampolines’ domain occupies pkey0, and each

LEMON (as well as its stack, heap and dependencies), is

allocated with one pkey, i.e., pkey1 and pkey2, respectively.

The packet domain is always readable/writable to trampo-

lines and LEMONs, and thus does not need a specific pkey to

protect. At runtime, when trampolines are receiving or send-

ing packets, all three pkeys are enabled, because trampolines

have the full visibility to all domains. Before going into M1,

trampolines would disable pkey0 and pkey2. After M1’s pro-

cessing, the schedulable I/O in M1 would enable pkey2 for

M2’s processing. After the processing of the last LEMON,

i.e., M2, its schedulable I/O will disable pkey2 and enable

pkey0 to jump back to trampolines. Note that to reduce the

domain switching, M1 would directly jump to M2 instead

of jumping back to the trampolines. In general, LemonNFV

would switch N +1 times for an SFC with N NFs.

4.4 Migrating the LEMONs
NF migration is essential when operators seek a balanced load

and/or efficient resource utilization. Existing works realize

this feature on top of a fully supervised infrastructure, e.g.,
OS-level virtualization [12, 44], or through specific migra-

tion interfaces, e.g., OpenNF [27]. Without above prerequi-

sites, LemonNFV leverages the standard LEMON binary to

empower users to migrate the LEMONs to other cores and

machines in an efficient way 2.

Intra-process LEMON migration. In consolidation ap-

proach, it is important that packets should be evenly dis-

patched to the workers, otherwise the CPU resources are

wasted [35]. Due to the dynamics in network (e.g., traffic

burst) and resources (e.g., adding a core), such balance is hard

to achieve if statically binding packet classes (i.e., a set of

flows) to cores. Instead, the NFV framework needs to migrate

the packet classes and the corresponding NF states to a new

core, to balance the working load.

LemonNFV addresses this challenge by relieving the close

binding between cores and LEMONs, making the consistent

migration possible for any state structures used in LEMONs.

To be specific, LemonNFV creates a pool of LEMONs, each

of which is dedicated for a packet class. Given the simple fact

that both executable code and states are within the LEMON,

“migrating the state of packet class P to core C” becomes

“letting core C execute the LEMON corresponding to P”.

Figure 5 shows a simple migration scenario, where the op-

erator allocates two cores (C1 and C2) to handle three packet

classes (P1–P3). In this case, LemonNFV will create three

LEMONs (M1–M3) dedicated for P1–P3, and ensure that cores

will always handle the packet classes with their correspond-

ing LEMONs. Assume we want to migrate P2 to C2. The

2The proposed migration schemes are for common load balancing scenar-

ios, while specific migration cases, e.g., migrating an arbitrary flow, balancing

a non-splittable flow, are not supported. See §7 for a discussion.



NIC

C1

C2

P2

P1

P3

M1

M3

M2

1 New rule: P2→C2

2 P2 is handled by C2

3 C1 no longer sees P2

4 C2 processes P2 with M2

Figure 5: Intra-server LEMON migration. C1 and C2 are cores,

P1–P3 are three packet classes, and M1–M3 are three identical

LEMONs dedicated for P1–P3.

hypervisor first issues a new rule to the NIC (or modifies the

global RSS table [16]), which directs the NIC to tag and send

P2 to the queue binding to C2 (�). At this point, all packets

belonging to P2 will be handled by C2 (�), and C1 cannot see

P2’s packets immediately (�). When C2 receives the packets

of P2, it can safely process them with M2 (�). Since the states

of P2 are always within M2, there is no need to synchronize

or copy states between cores. However, since each core has

a receive queue, there is a minor risk that C1 still holds a

few packets of P2 after the migration. For this case, we could

create a receive queue for each packet class, and let different

cores to handle the queue while migration, which would cost

little performance [16].

�–� are natural consequences of �, meaning that the over-

head of migration is essentially the time of rule installation,

which only amounts to sub-milliseconds.

Inter-process LEMON migration. Besides the intra-server

load balancing, the network-wide load balancing calls for

migrating LEMONs across different LemonNFV servers (pro-

cesses) in runtime. This is done by (1) allocating identical

addresses for LEMONs across processes and (2) migrating

the snapshots (memory dump) of LEMONs iteratively.

For the first, the LEMON loader has ensured the address

consistency across different processes. One concern here

is that can a single process provide enough address space,

if considering different types of NFs and per-packet-class

pool of LEMONs. In fact, modern 64-bit system can eas-

ily reserve 96TB of virtual memory (e.g., 0x100000000000

- 0x700000000000) to support 32768 LEMON instances

(6GB memory each), i.e., 128 types of NFs with 256 packet

classes, which are sufficient given limited number of popular

NFs. Note that this restriction is for the unique LEMONs in

network-wide servers, and the length of SFC in a single server

is still bounded by the physical memory and PKU limitation.

Secondly, LemonNFV needs to realize a packet-lossless

migration. In runtime migration, the snapshot is taken after

the LEMON loosing references over a batch of packets, and is

transmitted to its destination. The LEMON loader then loads

it into the corresponding slot and modifies the SFC. Since

all states are within the LEMON, the migration will not lose

any state. However, the cross-machine transmission might be

time-consuming due to the large snapshot, resulting in packet

losses to the LEMON.

To this end, LemonNFV iteratively copies the snapshot [12].

Specifically, in phase -1, LemonNFV pre-copies the whole

snapshot to the target, and uses dirty page tracking [8] to

locate that a portion of memory d becomes dirty through this

phase. Then in phase 0, LemonNFV only transmits the dirty

bytes, and locates the new dirty memory d. When d is getting

smaller, the transmission time also decreases, which further

reduces d in the next phase. Iteratively, the dirty memory

transmission can finish within a negligible time, which is the

right timing to route the packets to the new machine. See

Appendix B for a detailed implementation.

5 Implementation

We implement a prototype of LemonNFV with 5K lines of

C code, including the unified abstractions, i.e., the schedula-

ble I/O and the restricted allocator, and the system compo-

nents, i.e., the LEMON loader, the LEMON scheduler and

the LEMON isolator with PKU. We highlight several key

implementations and enhancements in our prototype.

Schedulable I/O. The prototype implements a schedulable

version for all I/O functions used by NFs in §6, which includes

28 libpcap [7] and 41 DPDK [5] functions. The user can

easily intercept I/O interfaces not included in the prototype

by adding functions to the preload libraries when involving

new NFs.

Restricted allocator. As mentioned in §3.2, each LEMON

should notify its memory budget to LemonNFV. This is to

avoid the runtime fault like memory leak: if the customized

memory allocator detects that a LEMON exceeds its memory

limitation, LemonNFV can unload it before it drains all host

memory. Besides, this also enables a simple but effective

optimization, i.e., memory pre-allocation, which can largely

improve the memory performance in runtime for memory-

intensive NFs. To be specific, when a LEMON requires a

certain portion of memory, the customized memory allocator

pre-allocates all memory in the heap, so that it does not need

to make expensive syscalls like mmap in runtime.

Fault isolation. §4.3 mainly considers the memory isola-

tion, while the fault isolation is also critical for consolidation

approaches. Since all NFs are in the same process, a run-

time fault, e.g., divided by zero, of a single NF would fail

the whole chain. This task is addressable with the help of

the trampolines in LemonNFV. First, LemonNFV registers a

set of signal handlers for dealing with the runtime fault like

SIGABRT, SIGSEGV and SIGILL. Then, once those signals are

captured, the trampoline can decide how to prevent the faulty

LEMONs from impacting others. In the prototype we simply

remove the faulty one and pass the packets to downstream

LEMONs. Other policies like restoring a LEMON to its near-

est checkpoint can also be implemented based on the above

fault capture scheme.



6 Evaluation

In this section, we evaluate the practicality, performance and

overhead of LemonNFV with real and synthesized NFs. We

are particularly interested in the following questions.

1) Can LemonNFV consolidate heterogeneous NFs to ob-

tain high performance without much coding effort? Ex-

periments show that LemonNFV can consolidate real

NFs from different frameworks as the virtualization ap-

proach, i.e., without modifying native code, and achieve

a high-performance SFC as the consolidation approach,

i.e., incurring minor overhead between NFs (§6.2).

2) Can LemonNFV outperform state-of-the-art NFV sys-

tems? Experiments show that LemonNFV is 1.9–2.4×
faster than a state-of-the-art virtualization approach, and

incurs only 0.7–4.3% overhead compared to a state-of-

the-art consolidation approach (§6.3).

6.1 Experimental Setup

Testbed. Our testbed is an x86 machine (24×Intel Xeon 3Ghz,

256GB memory) equipped with a Mellanox CX-6 DX NIC

(2-port 100Gbps). Hyperthreading and frequency boosting are

disabled in all CPUs, and the host OS is Ubuntu 20.04 with

Linux kernel 5.11. We use DPDK 21.05 as the packet I/O for

LemonNFV with 32 as the batch size, and enable S-RSS in

multi-core experiments.

We prepare two traces for testing: ISP trace from a large

service provider that contains majorly TCP flows (8.6M pack-

ets, 3.9M active flows, 652 bytes in average) and ENT trace

captured from an enterprise network which mostly consists of

GTP (UDP) packets (11.2M packets, 462 bytes in average).

Another server with the same NIC replays the traces to

the testbed at line rate, serving as the packet generator. The

testbed is configured to forward all traffic back to the genera-

tor, no matter whether NFs drop them or not. We run each ex-

periment under 100Gbps traffic and record the average value

of 20 seconds. Each experiment is then repeated 10 times and

the average result is reported.

Real NFs. We consider NFs built upon the fast userspace

I/O (DPDK) and kernel I/O (libpcap). We involve three

DPDK NFs: an IDS based on Rubik [41] that matches the

reassembled payload with snort-like rules; a NAT based on

FastClick [17] that is composed of many inherent elements

like traffic classifier and ARP querier; and an ACL based

on NetBricks [52]. We further involve two libpcap NFs: a

connection tracker (CT) based on mOS [34] that tracks the

status of TCP connections; and a DPI tool based on nDPI [9]

that can identify 170+ L7 applications.

Synthesized NFs. We further choose several synthesized NFs

which are feasible to be ported, such that we can fairly com-

pare them under different frameworks. We use NFD [32] to

produce four stateful NFs: network address port translator,

heavy hitter detector, super spreader detector, and UDP flood

Table 1: The real NFs and the efforts for interoperation.

NF Framework Lang. I/O CN CF CH

IDS Rubik [41] C DPDK 337 31K 2

NAT FastClick [17] C++ DPDK 94 331K 2

ACL NetBricks [52] Rust DPDK 401 58K 8

CT mOS [34] C libpcap 325 139K 4

DPI nDPI [9] C libpcap 4498 121K 2

CN: the LOC of the NF logic, CF: the LOC of the framework
CH: the LOC modified by LemonNFV for interoperation

mitigation. We further extract four NFs from OpenNetVM’s

repository [76], including payload scanning, stateless fire-

wall, AES encryption and decryption, which are stateless but

computing-intensive.

6.2 Comparing with the Ideals

When interoperating, i.e., chaining, isolating and managing,

heterogeneous NFs, we have two ultimate goals: without code

modification and performance penalty. To this end, we use

the real NFs to compare LemonNFV with two ideals, i.e., a

virtualization approach that does not modify a single line of

code, and a pure consolidation approach that does not incur

any performance penalty.

Efforts of interoperating NFs. As shown in Table 1, the real

NFs are heterogeneous in many ways including the language,

I/O, etc. We assume the virtualization approach emulates a

full running environment, e.g., with VM or Docker, and thus

does not need to modify the real NFs for chaining them. On

the other hand, the consolidation approach needs to extract or

wrap the NF logic for interoperation.

Intuitively, it would only cost limited coding efforts, since

the high-level NF logic is relatively simple and neat, as shown

in CN in the table. However, the factual task would cost much

more than that number. For example, to implement an NAT in

FastClick only needs to write 94 LOC for a Click script, while

to interoperate this NF with CT in mOS, one has to dig into

the detailed implementation in FastClick and mOS, to ensure

they have the same packet abstractions, are not conflicting

in variable/function names, and do not incur dirty writes on

global data structures, etc. Things get more complex when

porting NFs with different languages, e.g., rewriting a Rust NF

into a C/C++ one. Generally, the effort of code reading and

writing for consolidating heterogeneous NFs would approach

to the numbers shown in CF.

LemonNFV does not modify a single line of native code

(e.g., C/C++, Rust) for consolidating these NFs. The only

effort we made is to modify the compilation configurations

of the NFs, e.g., adding -fPIC and -shared in Makefile, to

compile the NF as a shared library instead of an executable,

which amounts to a handful of LOC. We also feed the com-

mand line arguments, i.e., argv, to each LEMON with a con-

figuration file, which also contains minor LOC. CH in Table 1

shows the total number of modified LOC.



Table 2: Performance comparison over real NFs.

Per-Packet Latency (us) Throughput (Gbps)
Ideal Docker LemonNFV Ideal Docker LemonNFV

ISP 0.66 240 (+362×) 0.68 (+3.8%) 22.9 11.6 (-49%) 22.0 (-3.8%)

ENT 0.59 224 (+223×) 0.60 (+2.8%) 18.3 12.7 (-31%) 17.7 (-3.2%)

Performance comparison. We chain the real NFs to conduct

a sequential SFC: IDS→NAT→ACL. We do not involve the

two libpcap NFs here because the slow packet I/O would

significantly enlarge the performance gap between virtual-

ization and other approaches. As a reference, CT and DPI

with LemonNFV are 5.6× and 3× faster than their libpcap
versions respectively. We consider two performance metrics:

the processing time of each packet, i.e., the elapsed time after

it entering the first NF and before it leaving the last NF, and

the end-to-end throughput.

For virtualization approach, we use Docker containers to

carry the NFs. Each container is equipped with one CPU

core and two virtual NICs, and the SR-IOV [15] technique

ensures the line-rate packet forwarding between Dockers with-

out CPU interventions. Due to the large codebase of real NFs,

we do not implement a pure consolidation approach. Instead,

we estimate its performance as follows: for the per-packet

latency, we simply accumulate the processing time of each

single NF; for the throughput, we set up a basic DPDK I/O,

and delay each packet for the accumulated processing latency.

This should present the performance upper bound of con-

solidation since interference between NFs (e.g., cache and

memory contention) is removed.

Table 2 shows the performance comparison. It can be seen

that the Docker approach adds more than 200× latency com-

pared to the Ideal approach. Since those NFs are with high-

speed I/O, the major overhead comes from the packet pool in

the virtual NIC and DPDK, i.e., V2 mentioned in §2.1. On the

other hand, LemonNFV eliminates such overhead and only

incurs 2.8%–3.8% overhead, largely resulting from the PKU

switch between NFs.

Since Docker uses three separate cores, we also scale Ideal

and LemonNFV with three cores for throughput comparison.

The results show that Docker is in average 40% slower than

Ideal, while the overhead of LemonNFV is just 3.5%. The per-

formance gap between Docker and LemonNFV is narrowed

compared to the per-packet latency because the end-to-end

measurement includes the I/O latency between the testbed

and the packet generator (∼100us). Such gap would again

enlarge with longer SFC.

Loading and migration. Under LemonNFV, loading a

LEMON is essentially loading a shared library, which is fast

and predictable. We measure the loading time of all 5 real NFs,

and report that the max/average loading time is 28ms/7ms.

Note that LEMONs are loaded by the hypervisor in an asyn-

chronous way, so the factual overhead for the SFC can be

neglected. As a comparison, booting a container usually takes

hundreds of milliseconds [47].

(a) Throughput (b) Latency

Figure 6: Performance comparison with different SFCs and

traces using 4 cores. LemonNFV-M indicates LemonNFV

with memory pre-allocation enabled.

We also verify that our inter-process migration can be fin-

ished rapidly. We setup two processes on a single server, each

of which carries a naive packet forwarding LEMON. The

source process then loads IDS in Table 1, runs it for some

time, and migrates it to the destination process. Results show

that iterative migration copies over 400 dirty pages within

1.2s, and efficiently reduces the total downtime to only 6.9ms.

6.3 Comparing with Existing NFV Systems

We compare LemonNFV with state-of-the-art NFV frame-

works. For obtaining higher performance, these frameworks

often require developing NFs using specific interfaces. To this

end, we port the synthensized NFs to these frameworks and

compose two SFCs: Stateful that chains the four stateful NFs

from NFD, and Stateless that chains the four OpenNetVM

NFs. Performance is the focus of this comparison.

Comparing with NFVnice. We port the synthesized NFs into

NFVnice [40], a state-of-the-art virtualization-based approach

that deploys NFs inside processes and enables back-pressure

between them to minimize wasted work. NFVnice sets a large

packet queue (215) between each NF for higher throughput

and less packet loss, which would in turn increase the latency.

To this end, we measure the throughput with the default set-

ting, and measure the latency by reducing the queue size to

32 (default batch size). This could represent the ideal perfor-

mance a virtualization approach can achieve.

Figure 6 shows the comparison of NFVnice and Lemon-

NFV. LemonNFV is at least 88% faster than NFVnice with

55% less latency. Note that besides the four worker cores,

NFVnice employs two extra cores dedicated for packet I/O,

which, however, has been heavily hindered by the context

switches and cache misses when traversing SFCs.

Comparing with FastClick. FastClick [17] is an enhanced

version of Click [37] with high-speed I/O, optimized com-

pilation stages, and many useful elements. FastClick is the

basis of many state-of-the-art consolidation approaches like

Metron [35], RSS++ [16], PacketMill [25] and Reframer [28].

In FastClick, each NF is a C++ object, and chaining NFs is

just calling a function of the object. This implementation elim-

inates all extra overhead between NFs, indicating the ideal

performance of a consolidation approach.

Figure 6 shows that LemonNFV is only 1.5% slower than



Figure 7: Throughput comparison with NetBricks.

FastClick for Stateful. This demonstrates the end-to-end over-

head employed by LemonNFV, including the stack switch,

the pkey set, etc. The overhead increases to 4.2% for Stateless,

because this SFC is more lightweight, making the cost from

LemonNFV more significant.

After enabling the pre-allocation, LemonNFV-M even out-

performs FastClick by 9.2% in Stateful. This is because NFs

in Stateful are memory-access-intensive, such that the pre-

allocation would improve the performance significantly. For

the similar reason, Stateless performs almost the same with

and without this feature.

Comparing with NetBricks. The closest work to ours is

NetBricks [52], which also runs SFC in a single thread and

provides isolation among NFs. To compare the runtime over-

head when hosting NFs, we implement a simple ACL NF

using C in LemonNFV and Rust in NetBricks. This NF does

not use any complex algorithms and data structures, e.g., hash

table, from the standard library, to minimize the performance

difference from the language. We chain this NF for several

times to measure the scalability, and further involve the pure

consolidation, i.e., chaining the C NF by function call, as the

ideal approach.

Figure 7 shows that LemonNFV is on average 2.6% slower

than Ideal, while NetBricks incurs 11.9% overhead. With a

longer chain, the overhead of LemonNFV is stable (always

∼2.5%), but NetBricks incurs larger overhead (from 8.9% to

18.1%). This is because the overhead of NetBricks mainly

comes from the NF logic itself, i.e., checking array bounds

with Rust (reportedly a 14% overhead for an LPM [52]), while

the overhead of LemonNFV is irrelevant to the NF logic. As

a result, though the increasing chain length also increases the

number of domain switching, such overhead is still negligible

compared to the workload of NF itself. Considering that the

example NF is largely simplified, the factual gap between

LemonNFV and NetBricks would be much significant in real

cases.

Overhead analysis. We quantify the overhead employed by

LemonNFV to better understand the performance illustrated

above. For each LEMON switching, LemonNFV incurs the

following overhead: (O1) switching the memory domain by

writing the pkey registers, (O2) switching the private heap,

and (O3) switching the private stack to the target domain.

For O1, each domain switching invokes one write to the

pkey register, which averages to 82 cycles in both SFCs. O2 is

stable and minor (i.e., 9 cycles), because heap switching only

changes the base pointer of the heap. For O3, stack switching

needs to save the current context and restore the target. We

measure such overhead for each NF switching in Stateful and

Stateless and the result averages to only 31 cycles. Note that

above overhead is for a whole batch, meaning that the per-

packet overhead with default batch size (32) is only∼4 cycles

for each switching.

As a comparison, virtualization frameworks would be im-

peded by context switching, cache misses and TLB flushes.

To the best of our knowledge, Quadrant [68] has the least

overhead by pinning the NF instances on the chain to a single

core, which results in a per-packet overhead of ∼110 cycles.

In Stateless with 4 NFs, it will cost 530 more cycles than

LemonNFV ((110−4)×5 switching). As the per-packet la-

tency of Stateless is ∼4000 cycles in LemonNFV, Quadrant

is thus ∼13% slower in terms of the isolation overhead.

7 Related Work and Limitations

We discuss efforts that relate to or inspire LemonNFV.

NF development. FastClick [17] and BESS [30] can flexibly

wire their elements/modules up to the SFC (in an off-line

manner). However, those modules must be programmed with

specified interfaces, e.g., being inherited from certain base

classes. To reduce the overhead between NFs, NetBricks [52]

proposes to use a new language, Rust, with a set of domain-

specific abstractions for building NFs. However, it is costly

to re-implement all existing NFs using such new language.

NFD [32] can generate NF code from a high-level behavior

model. While this facilitates the porting task, NFD does not

make heterogeneous NFs interoperable, and operators are

still bound to a specific interface. Nethuns [18] advocates a

socket-independent programming abstraction for NFs, trying

to unifiying the packet I/O, but in turn proposing a new I/O.

Moreover, with LemonNFV, one can directly launch a

NF with out-dated I/O, e.g., official NetBricks with DPDK

17.08 [11], or develop a new NF with the simple packet I/O,

e.g., libpcap, and get the newest and fast I/O for free.

NF optimizations. OpenBox [19] and SNF [36] optimize

the SFC by eliminating the redundancy logics in NFs.

Metron [35] goes a step forward by offloading part of the

merged logic to programmable switches. PacketMill [25] and

Morpheus [50] compiles optimal data structures and control

flows for NFs. These optimizations require inner logics of

NFs, and thus cannot be borrowed by LemonNFV that views

each NF as an opaque box. We see it as an inherent trade-off

between the reusability and deep optimizations.

NF execution models. Virtualization approaches are eager

to improve the performance [22, 33, 40, 51, 76]. Exploiting

the parallelism of NFs is viewed to be a promising direc-

tion [64, 77]. However, according to its own results, the paral-

lel approach (NFP [64]) is 16.5% faster than the non-parallel

one (OpenNetVM [76]), but 26% slower than the RTC ap-

proach (BESS [30]). The factual gap should be larger be-



cause BESS has reached the wire-speed in that results. Quad-

rant [68] packages NFs into containers and schedules them

in a single core to avoid the cache misses, which, however,

would cause the thread context switch.

FastClick [17], BESS [30], OpenBox [19] and Metron [35]

are pure consolidation approaches, which achieve high per-

formance without isolation. NetBricks [52] is the first con-

solidation approach that considers the isolation. By reimple-

menting NFs with a safe language (Rust), NetBricks ensures

each instruction cannot access the data beyond its legal scope.

However, such operation in Rust is too strict, lowering ∼20%

throughput compared to native consolidation approaches [52].

Intra-process isolation. Hodor [31], ERIM [66], EPK [29]

and CubicleOS [59] leverage Intel PKU to isolate software

modules inside the process. LemonNFV is inspired by them

and is the first for using PKU to isolate NFs in SFC. However,

NFs can change pkey privileges themselves and thus break

the control flow integrity or subvert the hypervisor. We see

this as the nature of PKU and can leverage methods discussed

in existing works to harden PKU-based isolation [20].

Besides memory and fault isolation, previous work has also

proposed and enforced packet isolation, which prevents NFs

from accessing packets that don’t belong to them. Specifically,

an NF may tamper packets outside its batch since the packet

pool is shared by all NFs, contradicting the isolation among

them. To solve this, NetBricks [52] leverages safe language to

disable pointer arithmetic, and Quadrant [68] copies packets

to cast packets on memory private to each NF. Similarly,

LemonNFV can either limit permission on the exact batch

using pkeys, or simply copy packets to address this problem.

NF migration. NFV frameworks need to migrate NFs and

their states to balance the load across the cores or machines.

Previous literatures achieve this feature by adding migra-

tion APIs [27, 55], copying states with identical state struc-

tures [35], or using centralized state tables [16], all of which

require significant code modification to NFs. LemonNFV ad-

dresses this need by migrating the LEMON that packages the

NF logic and code together. However, each LEMON corre-

sponds to a certain packet class, which means LemonNFV

cannot migrate a specific flow [27], or balance the load for a

single large (i.e., non-splittable) flow [16].

Limitations. The design of LEMON and LemonNFV does

not meet every possible situation in deployment. (1) NFs

that do not run as a standalone process (e.g., NFs based on

eBPF [3] or partially offloaded to hardware [35]) are not sup-

ported due to their fundamental deviation from a LEMON’s

execution model. (2) LemonNFV enables fast inter-server

migration by disabling ASLR, which might be exploited by

buffer overflow. Nevertheless, the operator can still migrate

the whole LemonNFV process with ASLR enabled by lever-

aging checkpoint/restore methods (e.g., CRIU [2]), when con-

solidating untrusted NFs.

LemonNFV requires recompiling NFs from the source

code, which is not always available for off-the-shelf NFs.

However, we believe it does not compromise much practical-

ity of LemonNFV because the recompilation (1) still uses the

standard compiler (e.g., gcc), not raising concerns of security

and inconsistency, and (2) only recompiles the main program,

meaning that the original dependencies can be reused. These

facts help the NF vendors to re-publish their NFs as LEMONs

with a simple recompilation, and the users can directly plug

them into LemonNFV.

We emphasize that LemonNFV does not aim to address

all challenges in NFV. Instead, it tries to shed the light for

the NFV world by enabling the ability of heterogeneous NF

interoperation. On such basis, approaches like centralized

state management [70], NF fault recovery [62], load balanc-

ing [16, 58], VNF placement and orchestration [24, 26], etc,

could be complementary to LemonNFV.

8 Conclusion

We presented LemonNFV, a novel NFV framework that con-

solidates the heterogeneous NFs without code modification.

We demonstrated the practicality of LemonNFV with 5 real

NFs, and evaluated LemonNFV by comparing with state-of-

the-arts. The results showed that LemonNFV outperforms the

state-of-the-art virtualization approach by 1.9–2.4×, while

only sacrifices 0.7–4.3% performance for isolation compared

to the ideal consolidation framework.

Acknowledgements. We would like to thank the anonymous

NSDI reviewers and our shepherd Dejan Kostic for their valu-

able feedback. Peng Zhang is the corresponding author. This

work is partially supported by the National Key Research

and Development Program of China (No. 2022YFB2901403)

and the National Natural Science Foundation of China (No.

62172323 and No. 62272382).

References

[1] Address space layout randomization. https:
//en.wikipedia.org/wiki/Address_space_
layout_randomization.

[2] Checkpoint/restore in userspace. https://criu.org/.

[3] eBPF - Introduction, Tutorials & Community Resources.

https://ebpf.io/.

[4] Service Function Chaining Use Cases In Data Cen-

ters. https://datatracker.ietf.org/doc/html/
draft-ietf-sfc-dc-use-cases-06, 2017.

[5] DPDK. http://www.dpdk.org/, 2018.

[6] Libnids. http://libnids.sourceforge.net/, 2018.

[7] libpcap. http://www.tcpdump.org/, 2018.



[8] mm: Ability to monitor task memory changes (v3).

https://lwn.net/Articles/546966/, 2018.

[9] nDPI. https://bit.ly/3ITdis5, 2018.

[10] Snort. https://www.snort.org/, 2018.

[11] NetSys/NetBricks. https://github.com/NetSys/
NetBricks, 2019.

[12] The vMotion Process Under the Hood.

https://blogs.vmware.com/vsphere/2019/
07/the-vmotion-process-under-the-hood.html,
2019.

[13] Passive Real-time Asset Detection System. https://
github.com/gamelinux/prads, 2020.

[14] Memory Protection Keys - The Linux Kernel doc-

umentation. https://www.kernel.org/doc/html/
latest/core-api/protection-keys.html, 2021.

[15] Single Root IO Virtualization (SR-IOV) - Mellanox.

https://docs.mellanox.com/pages/viewpage.
action?pageId=47033949, 2021.

[16] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire,

and Dejan Kostić. RSS++: Load and State-Aware Re-

ceive Side Scaling. In ACM CoNEXT, 2019.

[17] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast

Userspace Packet Processing. In ACM/IEEE ANCS,

2015.

[18] Nicola Bonelli, Fabio Del Vigna, Alessandra Fais,

Giuseppe Lettieri, and Gregorio Procissi. Programming

socket-independent network functions with nethuns.

SIGCOMM Comput. Commun. Rev., 52(2):35–48, 2022.

[19] Anat Bremler-Barr, Yotam Harchol, and David Hay.

OpenBox: A Software-Defined Framework for Develop-

ing, Deploying, and Managing Network Functions. In

ACM SIGCOMM, 2016.

[20] R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and

Max Schuchard. Pku pitfalls: Attacks on pku-based

memory isolation systems. In USENIX Security, 2020.

[21] R. Cziva and D. P. Pezaros. Container Network Func-

tions: Bringing NFV to the Network Edge. IEEE Com-
munications Magazine, 55(6):24–31, 2017.

[22] Mihai Dobrescu, Norbert Egi, Katerina Argyraki,

Byung-Gon Chun, Kevin Fall, Gianluca Iannaccone,

Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.

RouteBricks: Exploiting Parallelism to Scale Software

Routers. In ACM SOSP, 2009.

[23] Mohamed Esam Elsaid, Hazem M Abbas, and Christoph

Meinel. Virtual machines pre-copy live migration cost

modeling and prediction: a survey. Distributed and
Parallel Databases, pages 1–34, 2021.

[24] Mehmet Ersue. Etsi nfv management and orchestration -

an overview. https://www.ietf.org/proceedings/
88/slides/slides-88-opsawg-6.pdf, 2013.

[25] Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q.

Maguire Jr., and Dejan Kostić. PacketMill: Toward per-

Core 100-Gbps Networking. In ACM ASPLOS, 2021.

[26] Aaron Gember, Anand Krishnamurthy, Saul St.

John, Robert Grandl, Xiaoyang Gao, Ashok Anand,

Theophilus Benson, Aditya Akella, and Vyas Sekar.

Stratos: A network-aware orchestration layer for middle-

boxes in the cloud. Technical Report arXiv:1305.0209,
2013, 2013.

[27] Aaron Gember-Jacobson, Raajay Viswanathan,

Chaithan Prakash, Robert Grandl, Junaid Khalid,

Sourav Das, and Aditya Akella. OpenNF: Enabling

Innovation in Network Function Control. In ACM
SIGCOMM, 2014.

[28] Hamid Ghasemirahni, Tom Barbette, Georgios P. Kat-

sikas, Alireza Farshin, Amir Roozbeh, Massimo Girondi,

Marco Chiesa, Gerald Q. Maguire Jr., and Dejan Kostić.

Packet order matters! improving application perfor-

mance by deliberately delaying packets. In USENIX
NSDI, 2022.

[29] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo

Chen. EPK: Scalable and efficient memory protection

keys. In USENIX ATC, 2022.

[30] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,

Dongsu Han, and Sylvia Ratnasamy. SoftNIC: A Soft-

ware NIC to Augment Hardware. Technical Report

UCB/EECS-2015-155, EECS Department, University

of California, Berkeley, 2015.

[31] Mohammad Hedayati, Spyridoula Gravani, Ethan John-

son, John Criswell, Michael L. Scott, Kai Shen, and

Mike Marty. Hodor: Intra-Process Isolation for High-

Throughput Data Plane Libraries. In USENIX ATC,

2019.

[32] Hongyi Huang, Wenfei Wu, Yongchao He, Bangwen

Deng, Ying Zhang, Yongqiang Xiong, Guo Chen, Yong

Cui, and Peng Cheng. NFD: Using Behavior Models to

Develop Cross-Platform Network Functions. In IEEE
INFOCOM, 2021.

[33] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood.

NetVM: High Performance and Flexible Networking Us-

ing Virtualization on Commodity Platforms. In USENIX
NSDI, 2014.



[34] Muhammad Asim Jamshed, YoungGyoun Moon,

Donghwi Kim, Dongsu Han, and KyoungSoo Park.

mOS: A Reusable Networking Stack for Flow Moni-

toring Middleboxes. In USENIX NSDI, 2017.

[35] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Re-

becca Steinert, and Gerald Q. Maguire Jr. Metron: NFV

Service Chains at the True Speed of the Underlying

Hardware. In USENIX NSDI, 2018.

[36] Georgios P. Katsikas, Marcel Enguehard, Maciej Kuź-

niar, Gerald Q. Maguire Jr, and Dejan Kostić. SNF: syn-

thesizing high performance NFV service chains. PeerJ
Computer Science, 2:e98, 2016.

[37] Eddie Kohler, Robert Morris, Benjie Chen, John Jan-

notti, and M. Frans Kaashoek. The Click Modular

Router. ACM Transactions on Computer Systems,

18(3):263–297, 2000.

[38] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,

and Elias Athanasopoulos. No Need to Hide: Protect-

ing Safe Regions on Commodity Hardware. In ACM
EuroSys, 2017.

[39] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre,

Sharan Santhanam, Alexander Jung, Gaulthier Gain,

Cyril Soldani, Costin Lupu, Ştefan Teodorescu, Costi

Răducanu, Cristian Banu, Laurent Mathy, Răzvan Dea-

conescu, Costin Raiciu, and Felipe Huici. Unikraft: Fast,

specialized unikernels the easy way. In ACM EuroSys,

2021.

[40] Sameer G. Kulkarni, Wei Zhang, Jinho Hwang, Shri-

ram Rajagopalan, K. K. Ramakrishnan, Timothy Wood,

Mayutan Arumaithurai, and Xiaoming Fu. NFVnice:

Dynamic Backpressure and Scheduling for NFV Service

Chains. In ACM SIGCOMM, 2017.

[41] Hao Li, Changhao Wu, Guangda Sun, Peng Zhang, Dan-

feng Shan, Tian Pan, and Chengchen Hu. Programming

Network Stack for Middleboxes with Rubik. In USENIX
NSDI, 2021.

[42] Guyue Liu, Yuxin Ren, Mykola Yurchenko, K.K Ra-

makrishnan, and Timothy Wood. Microboxes: High

Performance NFV with Customizable, Asynchronous

TCP Stacks and Dynamic Subscriptions. In ACM SIG-
COMM, 2018.

[43] Guyue Liu, Hugo Sadok, Anne Kohlbrenner, Bryan

Parno, Vyas Sekar, and Justine Sherry. Don’t yank my

chain: Auditable NF service chaining. In USENIX NSDI,
2021.

[44] Haikun Liu, Cheng-Zhong Xu, Hai Jin, Jiayu Gong, and

Xiaofei Liao. Performance and energy modeling for live

migration of virtual machines. In ACM HPDC, 2011.

[45] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and

Yubin Xia. Thwarting Memory Disclosure with Efficient

Hypervisor-Enforced Intra-Domain Isolation. In ACM
CCS, 2015.

[46] Anil Madhavapeddy, Thomas Leonard, Magnus

Skjegstad, Thomas Gazagnaire, David Sheets, Dave

Scott, Richard Mortier, Amir Chaudhry, Balraj Singh,

Jon Ludlam, Jon Crowcroft, and Ian Leslie. Jitsu:

Just-In-Time summoning of unikernels. In USENIX
NSDI, 2015.

[47] Filipe Manco, Costin Lupu, Florian Schmidt, Jose

Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,

Costin Raiciu, and Felipe Huici. My VM is Lighter (and

Safer) than Your Container. In ACM SOSP, 2017.

[48] Antonis Manousis, Rahul Anand Sharma, Vyas Sekar,

and Justine Sherry. Contention-aware performance pre-

diction for virtualized network functions. In ACM SIG-
COMM, 2020.

[49] Joao Martins, Mohamed Ahmed, Costin Raiciu,

Vladimir Olteanu, Michio Honda, Roberto Bifulco, and

Felipe Huici. ClickOS and the art of network function

virtualization. In USENIX NSDI, 2014.

[50] Sebastiano Miano, Alireza Sanaee, Fulvio Risso, Gá-

bor Rétvári, and Gianni Antichi. Domain Specific Run

Time Optimization for Software Data Planes. In ACM
ASPLOS, 2022.

[51] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,

Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott

Shenker. E2: A Framework for NFV Applications. In

ACM SOSP, 2015.

[52] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,

Sylvia Ratnasamy, and Scott Shenker. NetBricks: Tak-

ing the V out of NFV. In USENIX OSDI, 2016.

[53] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon,

and Taesoo Kim. libmpk: Software Abstraction for Intel

Memory Protection Keys (Intel MPK). In USENIX ATC,

2019.

[54] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and

Sylvia Ratnasamy. SafeBricks: Shielding network func-

tions in the cloud. In USNIEX NSDI, 2018.

[55] Shriram Rajagopalan, Dan Williams, Hani Jamjoom,

and Andrew Warfield. Split/Merge: System Support for

Elastic Execution in Virtual Middleboxes. In USENIX
NSDI, 2013.

[56] Yuxin Ren, Guyue Liu, Vlad Nitu, Wenyuan Shao, Riley

Kennedy, Gabriel Parmer, Timothy Wood, and Alain

Tchana. Fine-Grained isolation for scalable, dynamic,

multi-tenant edge clouds. In USENIX ATC, 2020.



[57] Luigi Rizzo. netmap: A Novel Framework for Fast

Packet I/O. In USENIX ATC, 2012.

[58] Alexander Rucker, Muhammad Shahbaz, Tushar Swamy,

and Kunle Olukotun. Elastic RSS: Co-Scheduling Pack-

ets and Cores Using Programmable NICs. In ACM
APNet, 2019.

[59] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch.

CubicleOS: A Library OS with Software Componenti-

sation for Practical Isolation. In ACM ASPLOS, 2021.

[60] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K.

Reiter, and Guangyu Shi. Design and Implementation

of a Consolidated Middlebox Architecture. In USENIX
NSDI, 2012.

[61] Junxian Shen, Heng Yu, Zhilong Zheng, Chen Sun,

Mingwei Xu, and Jilong Wang. Serpens: A high-

performance serverless platform for nfv. In IEEE/ACM
IWQoS, 2020.

[62] Justine Sherry, Peter Xiang Gao, Soumya Basu, Auro-

jit Panda, Arvind Krishnamurthy, Christian Maciocco,

Maziar Manesh, João Martins, Sylvia Ratnasamy, Luigi

Rizzo, and Scott Shenker. Rollback-recovery for mid-

dleboxes. In ACM SIGCOMM, 2015.

[63] Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata

Banerjee. Snf: Serverless network functions. In ACM
SoCC, 2020.

[64] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and

Hongxin Hu. NFP: Enabling Network Function Par-

allelism in NFV. In ACM SIGCOMM, 2017.

[65] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin

Walls, Katerina Argyraki, Sylvia Ratnasamy, and Scott

Shenker. ResQ: Enabling SLOs in Network Function

Virtualization. In USENIX NSDI, 2018.

[66] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.

Duarte, Michael Sammler, Peter Druschel, and Deepak

Garg. ERIM: Secure, Efficient in-Process Isolation with

Protection Keys (MPK). In USENIX Security, 2019.

[67] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and

Susan L. Graham. Efficient Software-Based Fault Isola-

tion. In ACM SOSP, 1993.

[68] Jianfeng Wang, Tamás Lévai, Zhuojin Li, Marcos A. M.

Vieira, Ramesh Govindan, and Barath Raghavan. Quad-

rant: A cloud-deployable nf virtualization platform. In

ACM SoCC, 2022.

[69] Dan Williams, Ricardo Koller, Martin Lucina, and

Nikhil Prakash. Unikernels as Processes. In ACM SoCC,

2018.

[70] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon,

Sylvia Ratnasamy, and Scott Shenker. Elastic Scaling

of Stateful Network Functions. In USENIX NSDI, 2018.

[71] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley

Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,

Neha Narula, and Nicholas Fullagar. Native client: A

sandbox for portable, untrusted x86 native code. In

IEEE Symposium on Security and Privacy, 2009.

[72] Farnaz Yousefi, Anubhavnidhi Abhashkumar, Kausik

Subramanian, Kartik Hans, Soudeh Ghorbani, and

Aditya Akella. Liveness verification of stateful network

functions. In USENIX NSDI, 2020.

[73] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Mat-

teo Rizzo, Luis Pedrosa, Katerina Argyraki, and George

Candea. Verifying software network functions with no

verification expertise. In ACM SOSP, 2019.

[74] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Kate-

rina Argyraki, and George Candea. A formally verified

nat. In ACM SIGCOMM, 2017.

[75] Kaiyuan Zhang, Danyang Zhuo, Aditya Akella, Arvind

Krishnamurthy, and Xi Wang. Automated verification

of customizable middlebox properties with gravel. In

USENIX NSDI, 2020.

[76] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah,

Phillip Lopreiato, Gregoire Todeschi, K.K. Ramakrish-

nan, and Timothy Wood. OpenNetVM: A Platform for

High Performance Network Service Chains. In ACM
HotMiddlebox, 2016.

[77] Yang Zhang, Bilal Anwer, Vijay Gopalakrishnan,

Bo Han, Joshua Reich, Aman Shaikh, and Zhi-Li Zhang.

ParaBox: Exploiting Parallelism for Virtual Network

Functions in Service Chaining. In ACM SOSR, 2017.

[78] Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang. A

closer look at NFV execution models. In ACM APNet,
2019.

Appendix A Multi-Threaded LEMON
Scheduling

For a single-threaded LEMON, the hypervisor would initial-

ize it, and the working thread will continue executing it, as

shown in Figure 4b. However, a LEMON could create its

own threads, which, except for the packet processing threads,

could include threads for event logging or user input com-

munication. In the following, we present how LemonNFV

cooperates with the multi-threaded LEMONs.

Taking Figure 8 as an example, a LemonNFV process has a

hypervisor thread (Th, red path), and an RTC working thread



1. Load LEMON
2. Save the stack
3. If not init:
4. init← true
5. Execute LEMON

6. EndIf
7. Notify trampolines

Hypervisor (H)
1. Initialization
2. Create thread
3. Print logs, etc.

LEMON (M)
1. Initialization
2. While True:
3. Call eth_rx_burst()
4. Process the packet
5. Call eth_tx_burst()
6. EndWhile

LEMON (P)

Loop back to Line 3

Figure 8: Cooperating with multi-threaded LEMONs. The

red path is the (original) hypervisor thread, and the orange

path is the newly created packet processing thread. After the

LEMON is initialized, the red thread becomes its main thread,

and the orange thread becomes the hypervisor thread.

(Tr, blue path). Assume a new LEMON M1 is being loaded

into the SFC, which creates a new thread for packet processing

(Tp, orange path), and manages that thread in its main thread

(Tm). The hypervisor would first execute the main function

in Th, that is, Tm = Th (Line 5 in H). After creating Tp in Th
(Line 2 in M), the execution in Tp would eventually call the

virtualized I/O for the very first time, i.e., the initialization part

(Line 3 in P). Then the execution would be switched into the

hypervisor stack (Line 6 in H). Note that since Tp is executing

the hypervisor logic, this thread now actually plays the role

of hypervisor thread. Next, Tp (the new hypervisor thread)

would notify Tr that a LEMON is ready to be attached into

the SFC (Line 7 in H), and Tr will switch the stack into the

packet processing logics of this LEMON next time received

the packets (Line 4 in P).

In sum, after loading a LEMON, Th becomes the manage-

ment thread of the new LEMON, Tp becomes the new hyper-

visor thread, and Tr is still the RTC working thread. Note that

the LEMON can also use Tm as the packet processing thread,

and create a new thread for management. In this case, Tm (Th)

will still be the hypervisor thread. The key here is that there

is only one packet processing thread for each LEMON, so the

virtualized I/O calls in that thread would eventually guide the

hypervisor and trampolines to properly handle it.

Appendix B Dirty Pages Tracking in Inter-
Process Migration

In the case of VM, the hypervisor can migrate the running VM

to another host without halting it, namely live migration. The

key is to capture the dirty pages by changing the accessing

rights of the page table entries. For example, Xen implements

a shadow page table to the original VM page table [44]. When

the hypervisor decides to track memory modifications, the

internal page table of the VM is transparently set to read only.

That is, memory writes will not trigger a fault, but propagate

to the shadow page table, recording the dirty pages during

pre-copy stage in the hypervisor. vMotion in VMWare takes

a similar approach [12].

Although each LEMON does not have a shadow or an iso-

lated page table, its memory region has explicit boundary.

(a) Lightweight (b) Heavy

Figure 9: Performance comparison of differently-loaded NFs

between their LemonNFV and vanilla DPDK version.

As a result, it is possible to adopt the above method by di-

rectly changing the accessing rights of the page table inside a

LEMON. To be specific, when migrating a LEMON, Lemon-

NFV first blocks the LEMON and changes the permission

of the LEMON’s memory to read only. Then, all the mem-

ory writes to the LEMON will trigger a SIGSEGV signal. A

pre-registered signal handler would capture this signal, record

the address to be written (which pollutes the page), and grant

write permission to the corresponding page. Upon completion

of the pre-copy stage (i.e., phase -1 in §4.4), the LEMON is

set to read only again, waiting for the next iteration.

Experiments on libnids [6], prads [13] and nDPI [9] with

real traffic show that after a few iterations, the number of

the modified pages eventually converge to 13, 7 and 4, re-

spectively (4KB for each page), which are far lower than the

stopping condition of iteration in Xen (<50 pages) and vMo-

tion (<16MB) [23], meaning that the factual migration would

only halt the LEMON for a neglected moment.

Appendix C Microbenchmark

In this section we present some additional microbenchmarks

of LemonNFV.

As in §6.3, the overhead of LemonNFV is irrelevant to the

NF logic, contrast to array bound checking. It’s then worth

discussing how this overhead would impact the performance,

under various workload and SFC length.

We prepare a light NF (∼200 cycles per packet) and a heavy

NF (∼2300 cycles per packet), packing them as LEMON as

well as porting them to DPDK. Under LemonNFV, variable

number of identical LEMONs are chained together, while

the DPDK version repetitively invokes the packet processing

function until chain length is met. Since the vanilla DPDK

version does not introduce additional overhead, it is referred

to as ‘Ideal’ later as a baseline.

Figure 9 presents the end-to-end throughput under variable

chain length and NF workload. We have the following ob-

servations and analysis for the results. First, the performance

gap between LemonNFV and Ideal is large when the NF is

lightweight (17.1% on average across all chain length), but

becomes much less significant when the NF is heavy (4.3%

on average). This corresponds to our analysis in §6.3 that

the overhead of LEMON switching is irrelevant from NF

logic. Since real-world NFs are generally more complex and



time-consuming, LemonNFV would be more preferable than

isolation methods based on array bound checking.

Second, given the fixed switching overhead, the perfor-

mance gap should be stable when the chain length increases.

This is also verified in Figure 9 when the chain length is under

7. However, the slowdown of LemonNFV grows when the

chain length continues to increase. For example, the average

slowdown of lightweight NF rises from 16.0% to 20.2% when

the SFC is longer than 8. We believe that this is mainly due to

cache contention of NFs co-locating on the same core [48,65].

Compared with virtualization based systems that often run

NFs on separated cores, RTC scheduling will be more likely

to drain cache and cause performance degradation [78]. We

consider it as a feature of RTC and leave better profiling and

optimizing cache performance as our future work.


