
ClickINC: In-network Computing as a Service in Heterogeneous
Programmable Data-center Networks

Wenquan Xu†, Zijian Zhang†, Yong Feng†, Haoyu Song★, Zhikang Chen†,
Wenfei Wu§, Guyue Liu‡, Yinchao Zhang†, Shuxin Liu†, Zerui Tian†, Bin Liu†∗

†Tsinghua University, ★Futurewei, §Peking University, ‡New York University Shanghai

ABSTRACT

In-Network Computing (INC) has found many applications for per-

formance boosts or cost reduction. However, given heterogeneous

devices, diverse applications, and multi-path network typologies, it

is cumbersome and error-prone for application developers to effec-

tively utilize the available network resources and gain predictable

benefits without impeding normal network functions. Previous

work is oriented to network operators more than application devel-

opers. We develop ClickINC to streamline the INC programming

and deployment using a unified and automated workflow. Click-

INC provides INC developers a modular programming abstractions,

without concerning to the states of the devices and the network

topology. We describe the ClickINC framework, model, language,

workflow, and corresponding algorithms. Experiments on both an

emulator and a prototype system demonstrate its feasibility and

benefits.

CCS CONCEPTS

• Networks → In-network processing; Programmable net-

works; Programming interfaces.

KEYWORDS

In-Network Computing, Programmable networks, Programming

abstraction, Program compilation, Program placement

ACM Reference Format:

Wenquan Xu, Zijian Zhang, Yong Feng, Haoyu Song, Zhikang Chen, Wenfei

Wu, Guyue Liu, Yinchao Zhang, Shuxin Liu, Zerui Tian, Bin Liu . 2023. Click-

INC: In-network Computing as a Service in Heterogeneous Programmable

Data-center Networks. In ACM SIGCOMM 2023 Conference (ACM SIGCOMM

’23), September 10–14, 2023, New York, NY, USA. ACM, New York, NY, USA,

18 pages. https://doi.org/10.1145/3603269.3604835

1 INTRODUCTION

Defying the conventional wisdom, network is no longer consid-

ered as dumb pipe but also a computation-facilitating infrastruc-

ture which can help boost application performance (e.g., latency

and throughput) or reduce system cost (e.g., power and engaged

∗Bin Liu, Wenfei Wu, and Guyue Liu are the corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00
https://doi.org/10.1145/3603269.3604835

servers). Such a paradigm shift, dubbed as In-Network Computing

(INC), has benefited many applications (e.g., key-value store [17, 22],

machine learning (ML) aggregation [20, 29, 30], consensus [5, 6],

coordination [16], and streaming [15]). These applications are typ-

ically enabled by the programmable switches (e.g., Tofino [12])

which however is limited by hardware capability and capacity [19],

arising a trend to extend on heterogeneous programmable network

devices [2, 4, 13, 35] (e.g., Tiara [35] achieves a layer-4 load bal-

ancer), where the switch is used to perform throughput-intensive

task (packet encap/decap) and FPGA is used for memory-intensive

task (physical server selection).

While this momentum is inspiring, a closer look reveals a less

optimistic reality: the adoption of INC is currently limited to net-

work operators and has not yet to be embraced by application

developers, which hinders the development of new applications

and their large-scale deployment. The fundamental reason, we be-

lieve, is the lack of a high-level programming framework that can

abstract away the complexities associated with issues such as de-

vice heterogeneity, network topology, and function mapping. Early

efforts [8, 11] attempted to improve the programming abstraction

by hiding hardware details. Although this is a valuable first step,

there are still three major barriers. To see why, consider the state-

of-the-art framework Lyra [8].

Limited to low-level abstractions. Lyra progresses from low-

level and chip-specific languages (e.g., P4 [28] and NPL [25]) to a

more general and cross-platform language. However, it still requires

programmers to handle low-level details such as packet header pro-

cessing and network protocol handling, and is limited to basic

statements (e.g., if-else), rather than more advanced features (e.g.,

for-loop). Crucial features such as network transparency, cross-

device correctness, and program isolation are missing and need

to be implemented by INC programmers. These burdens discour-

age application developers from adopting the INC programming

paradigm.

Limited to a small-scale deployment. Lyra can run a data plane

program on multiple heterogeneous ASICs in a distributed way

(e.g., load balancer [9], in-band network telemetry [7]). It achieves

this by encoding the logic and different resource constraints into

a satisfiability modulo theories (SMT) problem, and using an SMT

solver (e.g., Z3 [24] and cvc5 [1]) to find the deployment strategy.

However, this approach is prohibitively slow (e.g., Z3 takes 30+

minutes to allocate ML Aggregation program on only 5 Tofino de-

vices). Furthermore, it can only find a feasible deployment without

considering resource utilization, thus limiting it to running a small

number of applications with fixed resources.

Limited to a single user. Lyra, alongwith other priorwork [11, 32],

is designed for network operators who have complete control over

all network devices and run a monolithic program in the target

798

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3604835&domain=pdf&date_stamp=2023-09-01

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Wenquan Xu et al.

network. In case of any changes, the entire program must be re-

compiled from scratch and reinstalled on affected devices, leading

to inefficiencies in terms of compilation and installation time. Fur-

thermore, this approach is unsuitable for running programs from

multiple users, as coordination between users is necessary and

traffic from different users must be interrupted for every change.

Given these issues, we argue the need of a new framework that

offers high-level abstractions for writing applications, and auto-

matically handles low-level system concerns such as placement,

cross-device communication, resource isolation, fault tolerance, and

more. With such a framework, developers would be able to offload

routine tasks to the framework and focus on the critical logic of

their applications.

In this paper, we present ClickINC, a framework for INC appli-

cation developers (referred to as “users”) to develop, deploy, and

manage programs on heterogeneous programmable network de-

vices in data centers. At a high level, ClickINC offers the following

capabilities: (i) ClickINC allows users to develop applications in a

high-level, Python-style language; (ii) ClickINC’s compiler frontend

compiles each user’s program into a platform-independent inter-

mediate representation (IR) program and determines the optimal

placement strategy across the network; then the backend translates

IR programs into chip-specific programs and launch them on the

target network; (iii) at runtime, ClickINC isolates resources for

different users and allows for dynamically adding and removing

programs. Compared to prior work, ClickINC makes the following

three notable contributions:

1) Modular programming abstractions. ClickINC encapsulates

common INC functionality into modules such as various sketches,

hash functions, providing users with a library. Users can work at

a higher level of abstraction and use a simple Python-style syntax

to import modules they need to write applications. This design

eliminates the need for users to worry about the low-level details

(e.g., packet-level processing and implementation of data struc-

tures), reducing the amount of code (at least 10 times lower), and

enabling them to reuse code across multiple projects. The com-

parison between ClickINC and other operator-oriented languages

such as Lyra can be drawn to that of Python and C/C++. While

C/C++ is fast and efficient, it is suited for low-level system develop-

ment, whereas Python is easier to learn and use, better suited for

application development.

2) Scalable placement algorithm. Efficiently placing programs on

a network of heterogeneous programmable devices is challenging.

In addition to different hardware features and resource constraints

considered by prior work [8, 32], we take into account three new

factors: (i) the network may consist of multiple paths for an appli-

cation; (ii) the interaction between program segments distributed

across multiple devices may result in extra overhead; (iii) users

may add or remove applications dynamically, but the placement re-

computing from scratch should be avoided. We propose a program

partition theory and based on it, we develop a dynamic program-

ming (DP) algorithm to solve the placement problem in polynomial

time and scale up to ~1,000 switches.

3) Incremental program compilation. To effectively support the

multi-user scenario where each user dynamically adds or removes a

program, ClickINC provides the incremental program compilation

feature (not runtime). Unlike prior work, we need to consider not

only the programs run by the operator for routine packet processing

and forwarding, but also programs from users for high-level appli-

cations such as key-value stores. Our key idea is to maintain the

operator’s program as the base program. By applying an annotation-

based method, multiple user programs can be correctly identified

and incrementally integrated to or stripped from the base program.

When synthesizing the base program and multiple user programs,

ClickINC isolates both programs’ states and control flows, ensuring

each user’s traffic is processed by the corresponding program.

We build an end-to-end system and implement three common

INC applications. Our evaluations show that ClickINC is 10X better

than the state-of-the-art programming languages in lines of code, as

well as near 1000X faster than SMT solver for program placement,

and 50%-75% less traffic is affected to deploy a new program.

2 BACKGROUND AND MOTIVATION

We provide the background of INC in data centers, and then discuss

the pain points of application developers to motivate the need of a

new INC framework.

2.1 INC in Data Centers

INC Applications.We use two common applications, key-value

store and ML gradient aggregation, to illustrate the process and

benefits of adopting the INC paradigm.

(1) Key-Value Store (KVS). Traditional KVS nodes are inefficient in

handling skewed, dynamic workloads due to limited server perfor-

mance. With the programmable network devices, the in-network

KVS, typified by NetCache [17], can accelerate KVS with 3-10x

throughput improvement and lower latency. To deploy KVS on a

capability-limited switch, the advanced data structure on servers

needs to be replaced with a hash based key-value table, a hit counter,

and a combination of Count-Min Sketch and Bloom Filter, to sup-

port cache read/write and statistics of queries for cache update.

(2) ML Gradient Aggregation (MLAgg). Traditional distributed

MLAgg relies on a parameter server (PS) or allreduce, which have

performance bottleneck on servers. To accelerate it, in-network

aggregation [20, 30] maintains a stateful structure called aggregator

array on switch to aggregate gradients from different workers,

which greatly improves the aggregation throughput. Packets are

addressed to aggregators by their job id and sequence number, and

an aggregator sums up the data from all workers and returns the

results back to workers. Due to the limited switch resource and

capability, the data type conversion from floating-point to integer

may be needed, and several other data structures are used to ensure

correct aggregation.

Heterogeneous Programmable Devices. The heterogeneous de-

vices in DCN (e.g., switches, FPGA, and smartNIC) can be roughly

classified as pipeline or multi-core devices. The former has a num-

ber of stages with each running a piece of the program and can

provide a throughput guarantee; the latter has multiple cores work-

ing in parallel and can support more complex functions. It may

be infeasible to deploy an INC application on a single device or

the same type of devices due to resource and feature constraints.

For example, to aggregate the ML parameter with 64 integers in a

packet, at least two Tofino switches are needed due to the limited

on-switch memory. Further, if the parameters have large sparsity,

799

ClickINC: In-network Computing as a Service in Heterogeneous Programmable Data-center Networks ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Figure 1: Language comparison for count-min sketch.

the sparsity detection and elimination function cannot be run on

the programmable switches and require another type of device (e.g.,

SmartNIC or FPGA).

2.2 Pain Points for Application Developers

We discussed the three problems of INC program development

in §1, and we further illustrate these problems using examples of

state-of-the-art solutions.

Low-level architecture and network details. The existing INC

programming is not friendly to application developers. Fig. 1 shows

an example of the implementation of an in-network count-min

sketch in Lyra, P4all, and ClickINC. Lyra and P4all are network

operator-oriented and preserve device specific concepts such as

pipeline, bit width, and CRC. In contrast, ClickINC’s basic pro-

gramming elements are for loop and Array, which are organized

following a Python-like high-level language syntax. The ClickINC

program is easier to learn and write, and needs fewer lines of code.

Limited number of devices and applications. It is error-prone

to place a program spanning multiple heterogeneous devices for ap-

plications with multi-path traffic. For example, to deploy an MLAgg

on a fat-tree network, due to complex network topology and unbal-

anced resources, manual placement may cause: (1) some paths with

an inadequate resource cannot be covered by MLAgg, so a lot of

traffic cannot be aggregated; (2) cross-device interaction overhead

as well as extra resource usage is high due to improper partition.

SMT solver (used by prior work [8]) should have been a good tool

to deal with this problem as the placement task can be modeled

in SMT. However, such solvers need to traverse the entire solu-

tion space which has an exponential time complexity on both the

number of instructions in the program and the number of devices.

Lack of user isolation. Existing network devices do not provide

isolation between user programs. These devices were designed

for a single-party operator, and thus do not have mechanisms (e.g.,

resource virtualization) to support multiple programs from different

users. For example, if two users deploy the same Count-Min Sketch

program (Fig. 1) as two instances, with naïve program splicing,

both users’ traffic will be monitored at the same memory region

vals.append(). This may impact the accuracy of measurement

and expose sensitive data (can be read by each other in relt).

3 CLICKINC OVERVIEW

Our goal in designing ClickINC is to provide a framework for de-

veloping INC applications and automatically deploying them on

heterogeneous programmable network devices in data centers. In

practice, we also want (i) the developing environment to be friendly

to developers, minimizing the effort required to apply the new INC

programming paradigm, and (ii) the deployment to be compatible

with existing INC deployments controlled by network operators.

3.1 Key Ideas

We first discuss the main ideas that enable ClickINC to tackle the

three pain points discussed in §2.2 while meeting the above two

practical requirements.

1) A high-level, Python-style language with built-in modules.

We observed that the key obstacle to using the existing languages

is it requires extensive architecture and network specific details.

Inspired by the success of the high-level language Python, Click-

INC provides users with Python-style syntax elements. Meanwhile,

ClickINC encapsulates widely-used basic data structures (e.g., key-

valuematching table) and functions (e.g., hash) as ClickINCmodules

and builds a library for code reuse.

2) A scalable placement algorithm based on the program

partition theory and topology compression. The large number

of heterogeneous devices compounded with a substantial amount of

program instructions makes the placement problem challenging. To

reduce the search space, ClickINC merges dependent instructions

into blocks to reduce the entities for placement, and leverages

the symmetry of the fat-tree topology (the most common data

center topology) to reduce the number of devices under placement

consideration. Such optimizations enable our efficient DP algorithm

to handle up to ~1,000 switches.

3) An annotation-based approach to incremental program

compilation. Running multiple programs from different users is

challenging due to the potential resource conflicts; supporting dy-

namic user requests which may add or remove a program is even

harder. ClickINC enables dynamic user requests while accommo-

dating existing operator programs by providing an incremental

compilation feature. Our idea is to treat the operator’s programs

as base programs. When synthesizing the base programs and user

programs, ClickINC uses an annotation-based approach to provide

both memory isolation and control flow isolation.

3.2 ClickINC’s Workflow

Fig. 2 shows the overall architecture and workflow of ClickINC. At

a high level, using ClickINC entails four steps:

(i) Writing a user program: ClickINC provides users a high-level,

Python-style language to write INC programs. Users can use built-in

modules which encapsulate common functions. Meanwhile, users

can specify application performance requirements through the

module parameters.

800

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Wenquan Xu et al.

Compiler Frontend (§4)

Program Placement (§5)

Program Synthesization (§6)

User Program 1 User Program 2

IR Program 1 IR Program 2

Snippet1 Snippet2 Snippet3 Snippet4

exe1

Tofino
Switch FPGATriden4

Switch SmartNIC

Base
Program

Base
Program

exe2 exe3 exe4

mm ee

PP SS aa

Figure 2: ClickINC architecture and workflow.

(ii) Compiling user programs to IR programs: The ClickINC

compiler frontend compiles each user’s program into an Interme-

diate Representation (IR) program, where the IR instruction set is

platform-independent. We choose the representative IR instructions

from each platform and merge the common ones.

(iii) Placing IR programs: Then ClickINC decides a placement

plan to deploy IR programs distributedly on network-wide het-

erogeneous devices. To handle a large number of programs and

devices, ClickINC uses a dynamic programming algorithm to find

the placement plan with the highest gain. Each user’s program may

be split into multiple snippets, one for each device.

(iv) Deploying on heterogeneous devices: Finally, ClickINC

compiler backend compiles snippets and the base programs (from

the operator) to executable device programs in device-specific lan-

guages. Each executable includes the base program and one or more

user snippets running user-specific applications.

4 PROGRAMMING ABSTRACTIONS

4.1 User Programming

Abstraction/Interfaces. INC programming can be cumbersome.

At the device level, the heterogeneous resources, network topology,

and target languages need to be considered; at the program level, a

complete INC program needs to tend every packet handling detail

including the inter and intra-device communication protocol. To

hide the complexity, ClickINC is built on the One Big INC (OBI)

abstraction (Fig. 3) which contains elements in three levels.

One Big Device. In OBI, the entire network is abstracted as a

single virtual programmable device D to INC developers. The tar-

get devices comprise switch ASICs, multi-core smartNICs, FPGA

smartNICs, and FPGA accelerator card, denoted as 𝐴, 𝑁𝑆 , 𝑁𝐹 , and

𝐹 , respectively. Especially, a switch ASIC can be equipped with a

bypass accelerator cards, denoted as 𝐴, to enhance its memory and

processing capacity. Thus, D = {𝐴,𝐴, 𝑁𝑆 , 𝑁𝐹 , 𝐹 }.
Transparent Network. The above elements make an INC program

a piece of standalone software. Behind the scenes, packet modifica-

tion on devices (e.g., INC header insertion, removal, and update) is

needed. ClickINC handles all such works with a generic internal

One Big Device

Plugin
Program

Transparent
Network

Figure 3: ClickINC OBI Abstraction.

INC App

ClickINC Language

Operator Languages (e.g., Lyra, P4all)
Domain-Specific Language (e.g., P4, NPL)

Application
Developers

Network
Operators

Templates
Module

Figure 4: Languages to program network devices.

header structure by the “INC layer” maintained on each end device,

and makes these issues transparent to both INC developers and

end-host applications.

Plugin Program. Although One Big Device frees developers from

dealing with device heterogeneity and network topology, an INC

program still needs to integrate with the underlying forwarding

function and the existing INC applications. OBI allows developers

to focus on the INC function alone and deem an INC program as

a standalone plugin on the One Big Device. The heavy lifting for

program partition, mapping, and integration is handled behind the

scenes. An INC program is plugged in or unplugged from the base

forwarding program without affecting existing INC functions.

ClickINC Language. For best appeal to users, ClickINC preserves

the high-level language abstraction for application developers as

illustrated in Fig. 4, which differs from operator language (e.g., Lyra)

and domain-specific language (e.g., P4). Fig. 5 shows the grammar

of the ClickINC language. A program consists of simple and com-

pound statements. A simple statement can assign an expression to a

variable. A compound statement can control branching or looping.

A branching statement is composed of a condition expression and

two branch bodies containing further statements. A loop statement

is composed of a condition and a body to be executed if the condi-

tion is met. An expression is composed of basic operators (Python

built-in) and operand (an expression, a variable, or a constant).

A function is treated as an expression which outputs a result by

computing on arguments. ClickINC supports a Python-like coding

style.

The ClickINC language introduces some INC specific elements to

ease the programming on network devices. The Fields, Objects and

Primitives abstractions are commonly used in INC applications [16,

17, 20, 33]. A field is a data type that can be used to declare variables

with the packet header semantic. An object is a collective data type

used to declare variable for five INC objects: Table, Array, Seq, Hash,

and Crypto. INC primitives, including Get, Write, Clear, Count,

Drop, Fwd, and Copy, operates on the INC objects.

801

ClickINC: In-network Computing as a Service in Heterogeneous Programmable Data-center Networks ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Program𝐺 :== 𝑣𝑎𝑟=𝐸
��𝐺 �� if𝐶 :𝐺 else:𝐺

�� for𝐶 :𝐺
Predicate𝐶 :== (𝐸&𝐸)

�� (𝐸 |𝐸) �� ∼ 𝐸
Expression 𝐸 :==𝑉

�� 𝑣𝑎𝑟 �� 𝑐𝑜𝑛𝑠𝑡 �� 𝐹 �� 𝐸 � 𝐸
Function 𝐹 :== max()

�� min()
�� range() �� slice() �� << �� · · ·

Field𝑉 :== value | header

Object𝑂 :== Table
�� Array �� Hash �� Seq �� Sketch �� Crypto

Primitive 𝑃 :== get(𝑂)
�� write(𝑂)

�� clear(𝑂)
�� count(O) ��

del(𝑂)
�� drop() �� fwd() �� copy(𝑂 ,𝑉)

Figure 5: ClickINC grammar. � denotes arithmetic or bit

operations, and underlined elements are ClickINC specific

(see Table 7 in Appendix A for “Function F”).

Each INCmodule is internally encoded in a platform-independent

language (i.e., the IR in §4.2). When compiling user programs, the

ClickINC toolchain links the INC modules to their IR implementa-

tions.

Modular Programming. The INC service provider implements

the INC specific elements as modules. With such modular pro-

gramming, we incorporate the INC-related data structures and

operations into a user-friendly high-level programming environ-

ment. A user can assemble a program with the ClickINC language

and the INC modules. Fig. 1 shows an example of implementing a

Count-Min Sketch using the INC object Array and Hash function.

Template. The service provider can also define common INC pro-

grams as templates, and provide them to users as libraries. ClickINC

provides the templates for MLAgg, KVS, and DQAcc (for SQL DIS-

TINCT function), which cover a broad range of INC applications.

To use a template, users need to provide a configuration profile,

so that to configure the module/template parameters. Users can

configure module/template data structures, e.g., Array size, directly.

Certain modules may need hardware-specific configurations that

are obscure to users. In this case, ClickINC provides the objective

function API of application performance for the user. For example,

a key-value search user may use max(0.7ℎ𝑖𝑡 + 0.3𝑎𝑐𝑐) to indicate

the preference on the hit ratio and the accuracy of statistics for

missed queries, with weight of 0.7 and 0.3 respectively. Especially,

as the OBI abstraction makes device transparent to users, leading

to the difficulty of setting resource-related parameters. Therefore,

ClickINC pre-learns a model to automatically set parameters based

on empirical experimental results. The details of the templates and

their configuration can be found in Appendix A.

Moreover, users can also incrementally add new logic to the

existing templates, saving the efforts to “re-invent wheels”. For

example, Fig. 6 shows how a user can build a customized sparse gra-

dient aggregation based on the MLAgg template: The user program

first imports and customizes a MLAgg template as an instance (line

1); then detects the sparse part of the parameter vector and drops

the sparse one (line 5-9); only the dense one will be aggregated by

MLAgg instance (line 10).

User-defined Module. Although we suggest the modules to be

implemented by the service provider for simplicity, ClickINC re-

serves the flexibility for users to design their own INC modules,

called user-defined modules.

To develop a user-defined INC module (i.e., object and primitive

shown in Fig. 5), a user needs to use the “low-level” instructions to

write the module program. These low-level instructions could be

IR instructions or operator-level instructions (like Lyra, and shown

in Table 8−Appendix A.4).

1 agg = MLAgg (row , dim , i s _ c onv e r t , s c a l e)

2 f o r i i n range (BlockNum) :

3 s p a r s e = 1

4 f o r j i n range (B l o c k S i z e) :

5 index = BlockNum ∗ i + j

6 i f hdr . f e a t [index] ! = 0 :

7 s p a r s e = 0

8 i f s p a r s e = 0 :

9 d e l (hdr . f e a t [index])

10 agg (hdr)

Figure 6: The user program based on the MLAgg template,

performing sparse gradient aggregation.

4.2 Program Intermediate Representation

Platform-Independent Intermediate Representation. To com-

pile a user program to machine code on heterogeneous devices,

ClickINC first compiles the program into an IR program.

ClickINC summarizes the IR instruction set from the different

platforms it supports. The IR instruction set is listed in Fig. 17 in

Appendix A.4. Some instructions are common on all platforms and

the others only run on certain platforms: there are 13 classes of

them, and each platform supports a subset of them as shown in

Table 9 in Appendix A.4. Such instruction constraints will take

effect in later program placement.

The ClickINC IR instruction set includes declaration instructions

and operation instructions, where the former defines variables and

the latter operates on variables. As the ClickINC IR instruction set

needs to adapt to programmable network devices (e.g., in pipeline

switches, a packet must sequentially traverse the pipeline stages

without rewinding back in one pass), it does not support control

flow transition (i.e., instructions like goto or jump). An IR program

is therefore executed sequentially.

Compiler Frontend. The ClickINC frontend compiler compiles

a user program into an IR program in the following passes: (1)

inline all the bodies of the functions in the main program from

the unified library; (2) unroll the loops if it makes constant pass of

the iteration, e.g., for i in range(3), otherwise an error will be

reported; (3) convert the if-else branches to ternary operators in the

format of condition? instr; (4) split the instructions into single-

operand ones. Especially, instructions with temporary variables are

transformed into Static Single Assignment (SSA) to eliminate the

write-after-read and write-after-write dependencies, helping the

IR Directed Acyclic Graph (DAG) construction in later program

placement (§5.2).

5 PROGRAM PLACEMENT

We formulate the problem of distributing an IR program on multi-

ple devices as an optimization problem and solve it by a dynamic

programming algorithm.

5.1 Problem Statement

The network contains multiple programmable devices, and a pro-

gram’s instructions can be distributed on multiple devices. Plac-

ing an IR program on network devices is an optimization problem,

where we wish to maximize the traffic volume served by INC while

minimizing the resource consumption as well as the inter-device

802

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Wenquan Xu et al.

Figure 7: An example of block construction.

communication overhead. The solution needs to make a few trade-

offs: placing more blocks on a device is simpler but limits the INC

capability and capacity, and distributing blocks on multiple de-

vices incurs inter-device communication overhead. Another key

invariant in program placement is to keep the program execution

equivalent as being executed on a single device.

Complexity. To place a program on multiple devices is to find

devices for each instruction of the program. The problem’s search-

ing space exponential of program size and network scope, i.e.,

𝑂 ((𝑀 ·𝑆)𝑁) where𝑀 , 𝑆 , and 𝑁 are the number of devices, pipeline

stages or cores for SoC device, and IR instructions. Naïve methods

may find sub-optimal results: greedily choosing a single path cannot

utilize the multi-path resources; simply replicating the program on

all paths could lead to device overloaded. Existing methods usually

cannot handle the problem in a large scale. Lyra needs manually

labeling the candidate devices of a program, which limits the result

optimality; if “all” devices are labeled as candidate devices, its SMT

solver approach cannot give the result in an acceptable time.

Intuition.We take three intuitions to reduce the algorithm com-

plexity in ClickINC. First, we group IR program instructions into

blocks, where all instructions in a block are executed all or none, and

thus, one block can represent all its instructions in the algorithm

(reducing 𝑁 , §5.2). In a DCN, there could be multiple paths between

two communicating INC hosts. On each path, the IR program blocks

must be placed sequentially; among the paths, blocks are replicated

on devices to guarantee the traffic on different paths is processed

by the same program; two paths’ intersection segment can hold

blocks shared by both paths.

Second, we group DCN devices into equivalent classes, and use

a class to represent all its devices in the algorithm (reducing 𝑀).

Third, we find that the placement problem can be divided into iso-

morphic sub-problems, and thus propose a dynamic programming

(DP) algorithm to search for the optimal solution, which gives a

solution in polynomial time.

5.2 IR Block DAG Construction

ClickINC first transforms the IR program into a Directed Acyclic

Graph (DAG) of disjoint instruction blocks to comply with the

sequential instruction execution. A block is a basic placement unit.

Each block contains instructions in the original order as in the IR

program, and the union of blocks equals the IR program.

In ClickINC, the IR block DAG construction should also comply

with several practical principles to ensure correctness. First, the

instructions operating on the same state should be in the same block

to avoid inconsistency. Second, the instructions in the same block

should be of the same type to ensure the block can be placed on

…

pod0 pod1 pod2 Client-side
sub-tree

Server-side
sub-tree

pod0

pod1

pod2

pod3

…

Figure 8: Topology Simplification (number in a circle: the

number of merged devices, color: device type).

some devices (not all devices support all instruction types). Third,

a block’s size should be limited by a threshold parameter decided

by the device capability. Appendix B.1 formalizes these principles.

ClickINC initializes each instruction as a block and gradually

merges the blocks complying with the above constraints. The algo-

rithm takes three steps.

Step 1: construct instruction dependency graph. If an instruc-

tion 𝑖 reads a variable whose value is written by a previous in-

struction 𝑗 , 𝑖 depends on 𝑗 . INC applications have a subtle pitfall:

the program is driven by packet arrival events and there are inter-

packet states (e.g., a packet counter). All instructions that write or

read the same state are mutually dependent. The other variables with

a life span of a packet are called temporary variables.

Step 2: merge instructions within a loop. The IR program can

be viewed as a directed graph 𝐺 , with the instruction as the node

𝑉 and the dependency as the edge 𝐸. ClickINC iteratively merges

nodes that form a loop. When multiple nodes (denoted as 𝑁) are

merged as one, a new node (i.e., block) forms to replaced the old

ones, and the edges between the merged nodes 𝑁 and the other

nodes𝑉 −𝑁 are replaced by edges between the new node and other

nodes. The algorithm repeats until there is no loop in the graph.

Step 3: merge non-exclusive blocks to compact the DAG.After

eliminating loops, the graph becomes a DAG. ClickINC further runs

Kahn’s topological sort algorithm to partition the graph and merges

non-exclusive blocks. Fig. 7 illustrates an example. Kahn’s algorithm

takes iterations to partition a DAG: each iteration takes the nodes

whose input degree is 0 as one partition and removes these nodes

and their related edges (Fig. 7b). After the Kahn partition, ClickINC

further merges blocks whose instructions are of the same type,

i.e., being non-exclusive, within the same partition (Fig. 7b-c) and

the adjacent partitions (Fig. 7c-d) without exceeding the block size

limitation. The process repeats until no more blocks can be merged.

5.3 Topology Simplification

ClickINC further reduces the search space for program placement

by simplifying the network topology. ClickINC leverages the DCN’s

topological characteristics to make the reduction. The network

devices in a DCN can be divided into several equivalent classes (EC),

where devices in the same class have the same physical wiring with

the other classes.

For a three-tier fat-tree topology, all its ECs can be computed

bottom-up in the topology. All ToR switches connecting with the

same servers form an EC, all aggregation switches connecting with

the same ToR switches form an EC, and all core switches form an

803

ClickINC: In-network Computing as a Service in Heterogeneous Programmable Data-center Networks ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

EC (as they connects to the same aggregation switches). Based on

the proof of the device equality in EC for program placement (see

Appendix B.2), we can merge the switches in an EC as one virtual

node, and thus the DCN topology is simplified to a tree (Fig. 8).

In the later program placement, ClickINC also takes advantage of

the path symmetry. All physical servers are at the leaf nodes of the

topology, and traffic goes upwards to a root and goes downwards

along the tree. Thus the tree is segmented into two parts by the

root, i.e., the client-side sub-tree and server-side sub-tree.

5.4 Placement Algorithm

Optimization Goal. The program placement algorithm aims to

find a solution to maximize the traffic served by INC with the

minimum resource consumption and network bandwidth for pass-

ing parameters between blocks (§6). With 𝑥𝑣,𝑑 ∈ {0, 1} indicating
whether block 𝑣 is placed on device 𝑑 , the objective 𝐺 (𝑥) can be

formalized as:

𝐺 (𝑥) = 𝜔𝑡ℎ𝑡 (𝑥) −𝜔𝑟ℎ𝑟 (𝑥) −𝜔𝑝ℎ𝑝 (𝑥), (1)

where ℎ𝑡 is the ratio of traffic served by INC, ℎ𝑟 is the ratio of

resource consumed on devices, andℎ𝑝 is the ratio of data transferred

across devices. The parameters 𝜔𝑡 , 𝜔𝑟 , and 𝜔𝑝 balance the three

factors. We empirically set 𝜔𝑡 as 1/2 to prefer high throughput, and

tune 𝜔𝑟 and 𝜔𝑝 dynamically according to the resource availability

as the algorithm proceeds.

ℎ𝑡 (𝑥) =
∑

𝑙∈𝐿𝑝

(∧
𝑣∈𝑃

∑
𝑑∈𝑙

𝑥𝑣,𝑑

)
×

𝑡𝑙∑
𝑙∈𝐿𝑝 𝑡𝑙

,

i.e., the overall normalized traffic volume on the selected paths,
where 𝑡𝑙 is the traffic volume on each path;

ℎ𝑟 (𝑥) =
∑

𝑑∈𝐷

∑
𝑣∈𝑉

𝑥𝑣,𝑑 ×
𝑟 (𝑣)∑
𝑣∈𝑉 𝑟𝑣

,

i.e., the overall normalized resources on the selected devices;

ℎ𝑝 (𝑥) =
∑

𝑑𝑖 ,𝑑𝑗 ∈𝐷

∑
𝑣𝑘 ,𝑣𝑙 ∈𝑉

𝑥𝑣𝑘 ,𝑑𝑖𝑥𝑣𝑙 ,𝑑𝑗 ×
𝜙𝑣𝑘 ,𝑣𝑙∑

𝑑∈𝐷
∑

𝑣∈𝑉 𝑥𝑣,𝑑𝜙 (𝑣)
,

i.e., the overall normalized volume of extra parameter incurred

due to program partition between selected devices, where 𝜙𝑣𝑘 ,𝑣𝑙
denotes the amount of extra data transferred between devices 𝑣𝑘
and 𝑣𝑙 , and 𝜙𝑣 refers to all extra data incurred by the block 𝑣 .
Dynamic Programming Algorithm for Placement. Even with

the reduced topology, the searching space to find an optimal place-

ment of IR program is still too large due to the possible multiple

flow paths from multiple pods. SMT or ILP solvers cannot give

the solution in an acceptable time. ClickINC uses an innovative

dynamic programming algorithm with pruning. In detail, for the

two sub-trees illustrated in Fig. 8, we try to allocate the program

but from different directions (i.e., sequentially allocate instruction

blocks from leaf to root for the client-side sub-tree and do it in

the reverse order for the server-side sub-tree, so that the problem

is translated into two sub-tree-based program placement). Then

we link the two sub-tree placement results by the root node, i.e.,

traverse all partial placement results of sub-trees, and choose the

one with the largest gain of Eq. 1 from all feasible combinations.

The placement task on each sub-tree devices can be discomposed

as two sub-tasks: (1) place the instruction blocks across devices

for multi-path traffic; (2) decide the placement of instructions in

Algorithm 1: Multi-path allocation

Input: 𝑅, 𝑆 , 𝐷 : the set of resources, stages, all available devices, B: the set of
instruction block to be allocated.

Output: 𝑠 : the allocation solution.
1 𝜔𝑡 , 𝜔𝑝 , 𝜔𝑟 ← adjust(𝑅, 𝐷 , 𝑆);
2 CDP←DFS_DP(CTree.root, 1);

3 SDP←DFS_DP(STree.root, -1);

4 for B ∈ CDP[CTree.root] do
5 B’← B-B;

6 if B’∈ SDP[STree.root] then
7 s← min(s, CDP[CTree.root]+SDP[STree.root])

8 return s;

9 Function DFS_DP(r,d):
10 A← ∅;

11 if r =∅ then
12 return

13 for c ∈ r.child do
14 𝐷𝑃𝑠𝑢𝑏 [c]← DFS_DP(r)

15 sub_G[∅]← 0;

16 for i ∈ ∪ 𝐷𝑃𝑠𝑢𝑏 [r.child].keys do
17 sub_G[i] = sum(𝐷𝑃𝑠𝑢𝑏 [i])

18 for i ∈ sub_G.keys do
19 𝐵𝑎𝑣𝑎 ← {𝑏 |𝑏 ∈ B − 𝑖 ; 𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒 (𝑏,𝑑) = 0};

20 for B ∈ enum 𝐵𝑎𝑣𝑎 do
21 curr← call𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 2(S[r], R[r], B);

22 DP[r][i+B]← max(DP[r][i+B], sub_G[i]+curr+𝑐𝑎𝑙𝑐_ℎ𝑝(i,B));

23 return DP;

each block within a particular device. We illustrate how ClickINC

addresses these two sub-tasks.
• Cross-device multi-path solution. Let 𝐻𝐵,𝐷𝑖 denote the maximum
gain of placing block(s) 𝐵 on a tree with 𝐷𝑖 as the root. When the
tree is a single device 𝐷𝑖 , 𝐻𝐵,𝐷𝑖 equals the gain of Eq. 1. When the
tree has subtrees, ClickINC places a partition 𝐵′ on the root node
(the partition can be ∅ or 𝐵) and the remaining onto the subtrees,
and the gain 𝐻𝐵,𝐷𝑖 is the sum of that on the root and the subtrees;
by iterating all possible partitions, ClickINC finds the one which
gives the maximum 𝐻𝐵,𝐷𝑖 , i.e.,

𝐻𝐵,𝐷𝑖 = max
𝐵′∈𝑃𝑎𝑟𝑡𝑖𝑜𝑛 (𝐵)

(∑
𝑗∈𝑠𝑜𝑛 (𝐷𝑖)

𝐻𝐵−𝐵′,𝐷𝑗 +𝐺 (𝐷𝑖 , 𝐵
′)
)
. (2)

The problem can be recursively divided into isomorphic sub-problems.

We design a dynamic programming algorithm to compute the prob-

lem bottom-up. The pseudo-code is shown in Algorithm 1: line 1

adjusts weights; line 2-3 uses Depth First Search (DFS) to traverse

two sub-trees and performs allocation; then for a leaf node, line

20-21 enumerates instruction blocks and calls Algorithm 2 to place

instruction in blocks within a device; for internal nodes, line 16-

17 integrates allocation results of possible branches and line 22

executes the DP following Eq. 2 where 𝑐𝑎𝑙𝑐_ℎ𝑝 (·) computes the

cross-device communication overhead. Especially, as illustrated in

line 10, we prune the illegal enumeration results that violate block

dependency to reduce the solution space. This algorithm can be

applied to a fat-tree or a spine-leaf topology with any number of

layers.
• Intra-device solution. To place instructions within a device, we use
another DP algorithm to ensure (1) the instructions satisfy resource
constraints; and (2) the placement has the largest gain according to
Eq. 1. Thus, we can derive:

𝐻𝑝,𝑆𝑖 = max
𝑝′∈𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑝)

(
𝐻𝑝−𝑝′,𝑆𝑖−1 +𝐺 (𝑆𝑖 , 𝑝

′)
)
, (3)

804

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Wenquan Xu et al.

Algorithm 2: Instruction allocation within a device

Input: 𝑆𝑑 , 𝑅𝑑 : the stages, resources of device 𝑑 , 𝑃 : set of instructions to be
placed.

Output: 𝐼 : Instruction allocation results.
1 𝐼 [-1]← {∅ : 0};

2 for s← 0 to 𝑆𝑑 do
3 for i ∈ 𝐼 [𝑠 − 1] do
4 if calc_resource(p)≤ 𝑅𝑑 [𝑠] then
5 𝐼 [𝑠] [𝑖] ← max(𝐼 [𝑠] [𝑖], 𝐼 [𝑠 − 1] [𝑖]) ;
6 𝑃𝑛𝑑 ← {𝑝 |𝑝 ∈ 𝑃 − 𝑖 ; 𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒 (𝑝) = 0};

7 for p ⊆ enum 𝑃𝑛𝑑 do
8 if ∃𝑖′ ∈ 𝐼 [s].keys && i+p ⊆ i’ then
9 continue;

10 if ∃𝑖′ ∈ 𝐼 [s].keys && i’ ⊆ i+p then
11 del I[s][i’];

12 𝐼 [s][i+p]← max(𝐼 [s][i+p], 𝐼 [s-1][i]+𝐺 (p));

13 return 𝐼 ;

where 𝑝 is the instructions that are placed, 𝑆𝑖 = [𝑠1, 𝑠2, · · · , 𝑠𝑖] is the
set of stages for pipeline devices (𝑆𝑖 = 𝑠0 for non-pipeline device).
On a pipeline, the instruction-to-stage mapping has a huge solution

space. To improve efficiency, � the infeasible solutions violating the

instruction dependency are pruned (line 6 of Algorithm 3); � the

target function Eq. 1 prefers solutionswithmore compact placement

(i.e., each stage should use up at least one type of resource), so

inadequate solutions are pruned (line 8-12). With these, the DP

algorithm achieves the similar solution as SMT in a much shorter

time. The pseudo-code is shown in Algorithm 2.

Adaptive Weight. As the algorithm proceeds, 𝜔𝑟 is set as 𝜔𝑟 =
1 − 2𝑟−1 and 𝜔𝑝 = 1/2 − 𝜔𝑟 , where 𝑟 is the ratio of remaining

resources. The adaptive weight could raise the importance of device

resource allocation as the remaining resource decreases (a smaller

𝑟 leading to a larger 𝜔𝑟).

PlacementConstraints andPruning.As theDP algorithm searches

the solution with the highest gain, the following pruning techniques

are applied to reduce the search space. When one of the following

constraints is violated, the algorithm sets 𝐻𝐵,𝐷𝑖 as negative infin-

ity (−∞) and stops exploring the branch: (1) if a device’s resource

capacity cannot satisfy the block; (2) if an instruction placement

violates the instruction dependency; (3) if a device’s computation

capability fails to satisfy the block’s instruction type. Besides, the

target function Eq. 1 prefers solutions with more compact place-

ment (i.e., each stage should use up at least one type of resource),

so inadequate solutions are pruned.

To map the program on the devices with various constraints,

we propose device modeling based on different architectures (i.e.,

pipeline, multi-core) to formalize the device-level instruction place-

ment and describe the chip-specific constraints in Appendix D.

6 PROGRAM SYNTHESIS

Each device runs a network operator-deployed program, called base

program, to perform the basic network functions such as packet

validation, forwarding, etc. Multiple users’ INC programs (snippets)

placed on the device rely on ClickINC to synthesize them as one

big program.

Figure 9: Program Synthesis.

A program typically consists of a header parsing snippet and a

packet processing snippet. User programs and the base program

could parse different header fields for their own packet processing.

Refine Runtime Data Plane. The network data plane are refined

to support program execution on distributed devices. The two re-

finements are transparent to the users: for a user’s traffic, the first

network device inserts a special header for the following refinement,

and the last one removes it.

First, temporary variables may be shared by multiple devices.

ClickINC allows the user packets to carry the shared variables from

one device to its downstream devices. ClickINC packet header has

a field Param to store the temporary variables. Note that persistent

variables are only used and placed on one device, and the static

single assignment transformation makes temporary variables only

have dependency from the successor device to the predecessor

along the DAG.

Second, ClickINC allows placing replicated blocks along a path.

For example, a program with blocks 1, 2, and 3 may be placed along

a four-hop path as 1, 2, 2, 3. Thus, ClickINC needs to decide and tell

the devices with replicated blocks which of them processes a packet.

ClickINC assigns each block in the DAG program a step number,

and adds a step field in the packet header. A device attempts to

match the packet step field with its own block’s step, if they match,

the block is executed and the packet step is increased to the next

step, otherwise, the packet skips the processing (if the packet step

number is larger) or dropped (if the packet step number is smaller).

Allowing replicated blocks in the network also provides another

advantage: if the network experiences a transient failure, a packet

can skip the faulty device and get processed by the successor device

with replicated blocks.

Compiler Backend. ClickINC first isolates user programs from

each other and the base program. It renames variable in the user

programs, so that after compilation their programs access isolated

memory region, without violating each others’ data. For example,

the mtb variable in a KVS program kvs_0 is renamed as kvs_0_mtb.
Then it adds a user ID match to filter out the user’s traffic for its

own program.

1 i f (INC_1_hdr . i s V a l i d ()) { l o g i c 1 ; }

ClickINC compiles each program individually into device-specific

instructions, called device program. These device programs are

merged with the following optimization, and eventually compiled

as an executable.

805

ClickINC: In-network Computing as a Service in Heterogeneous Programmable Data-center Networks ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

pod0 pod1 pod2

pod0 Pod2 a

pod1 Pod2 b

pod0 Pod2 a

pod1 Pod2 b

a ba ba b

Figure 10: Network Topology in Emulation.

Program Merge. ClickINC merges header parsing snippets and

packet processing snippets separately. The header parsing follows a

tree structure. When merging two programs’ header parsing, Click-

INC scans both trees, merges the different branches, and eventually

outputs a merged tree.

Merging packet processing snippets is more complex due to the

dependency between the user programs and the base program. For

example, the forwarding function in the base program depends

on the user program if the user program changes the packet’s IP

addresses (e.g., NetCache [17]); the user programs depend on the

packet integrity check function in the base program, because only

valid packets should be handed to the user programs. Thus, the

base program is divided into a head part and a tail part, where

head contains functions depended on by the user programs and tail

contains functions depending on the user programs.

For pipeline devices, as the upper part of Fig. 9(b) shows, the

user program is placed between head and tail of the base program.

The user program is moved to stages as early as possible to reduce

the overall stages. For multi-core devices, ClickINC merges the

dependency graphs of the user program and the base program

according to node dependency, and then merges the corresponding

code pieces based on the topological sorting order on the merged

graph, as illustrated in the lower part of Fig. 9(b).

Incremental Compilation for Dynamic Program Merge &

Removal. ClickINC applies an annotation-based method to sup-

port incremental user program merging and removal. ClickINC

associates each user program with an annotation indicating its

ownership. During the compilation, the annotation is associated

with each instruction. When merging a user program into the base

program, ClickINC incrementally adds the new user annotation to

the shared instructions and sets the new user’s own instructions

with its annotation.

When a user revokes its INC service request, ClickINC iterates

the synthetic program’s instructions, and removes the user’s an-

notation; if an instruction has no annotation, the instruction is

removed.

At runtime, ClickINC makes lazy enforcement for program re-

moval to reduce the service interruption. To remove a user pro-

gram, the program instruction dependency graph is updated and

the resource is recorded as released in ClickINC without immediate

enforcement. Meanwhile, the traffic matching rules are updated so

that the user program is not effective anymore. When a request

for adding a new program is submitted, ClickINC enforces the new

updated graph as the executable on the device.

Figure 11: Testbed.

7 EVALUATION

We conduct experiments to display ClickINC’s advantages. (1) Click-

INC makes use of resources on heterogeneous devices to achieve

high INC performance (§7.2); (2) The modular programming ab-

straction allows more efficient INC development for users than the

other solutions do, including Lyra, P4all, and P4, in terms of line of

code and programming efficiency (§7.3); (3) the cross-device INC

program allocation outperforms the current practices; (4) Click-

INC uses an efficient DP algorithm to perform program placement,

achieving very short compiling time and high scalability over both

the number of devices and program size; (5) With incremental

deployment, ClickINC achieves minimal impact on the network

devices, traffic, and other deployed INC programs.

7.1 Experiment Setting

Implementation. The ClickINC framework is implemented in C++

and Python with 8,755 and 3,133 lines of code, respectively, and

runs on a desktop with an Intel Core i7 4GHz CPU and 16GB RAM.

It currently supports Tofino, Tofino2, TD4, Netronome smartNIC,

Xilinx FPGA, covering the target DSL of P416, NPL, Micro-C, and

Verilog HDL.

Emulator.We construct a software emulation platform for evalu-

ating ClickINC on large networks with heterogeneous devices. A

server equipped with the switch SDE [14] for Tofino series ASIC

and BCM simulator for TD4 can emulate all the chip functions. Us-

ing virtual NIC pairs to act as switch ports, the emulator presents

the same resource constraints as a real switch and can be controlled

using the same API. Xilinx and Netronome also provide the soft-

ware behavioral model/simulator to emulate hardware FPGA/NFP

smartNIC which takes PCAP files as input and output. We set up

an emulator using 4 servers with 16 Virtual Machines (VM) (4 for

Tofino2, 6 for TD4, and 6 for Tofino), 4 VNetP4 behavior model

instances, and 8 NFP simulator instances which are organized in

the topology as shown in Fig. 10. The communication between

VMs is bridged through the physical NIC. Communication with the

VNetP4 behavior models or NFP simulators is achieved by using a

script program to generate and interpret the PCAP files.

Testbed. As shown in Fig. 11, Server2 runs the ClickINC controller

and serves as the switch controller as well. Server3 and Server4

run DPDK on Mellanox ConnectX-5 dual-port 100G NIC. Equipped

with Xilinx Alveo U280 FPGA and Netronome Agilio LX smartNIC,

respectively, Server0 and Server1 generate the traffic of integer

parameters. Two Edgecore Wedge100BF-32X switches are intercon-

nected, and each switch further connects with the two smartNICs

806

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Wenquan Xu et al.

(a) Goodput (b) In-network latency

Figure 12: Performance comparison.

Table 1: Comparison between ClickINC and other peers

Language LoC (KVS/ Modular Incremental Cross-Device
MLAgg/DQAcc) Programming Compilation Placement

ClickINC 16/56/13 Y Y Y
Lyra [8] 125/232/243 N N Y
P4all [11] 202/233/138 Y N N
P416 [28] 571/1564/403 N N N

or the two ConnectX-5 NICs, respectively. The link capacity is

100Gbps.

7.2 Application Performance

INC programs can achieve performance gain when compiled and

deployed by ClickINC. We control the network with (1) no pro-

grammable device, (2) only smartNICs, (3) only one Tofino switch,

(4) two Tofino switches, and (5) the smartNIC and a Tofino switch.

We deploy the sparse gradient aggregation program in Fig. 6 via

ClickINC in the five network configurations. Fig. 12(a) shows the

aggregation goodput and Fig. 12(b) is the corresponding INC pro-

cessing latency. Using setting (1) as the baseline, ClickINC compiles

the sparse gradient compression on the smartNICs in case (2), which

increases the goodput by reducing traffic volume. ClickINC com-

piles the aggregation on the switch in case (3), which increases the

goodput by in-network traffic aggregation. The program performs

better with two switches in case (4) than one in case (3), because

the packet size can be larger in case (4), and ClickINC places the

program on two switches, each processing a part of packets. And

finally, with a combination of two heterogeneous devices, the pro-

gram achieves the highest runtime goodput in case (5).

7.3 Program Development Workload

We develop three INC applications with ClickINC, Lyra, P4all, and

P416. The applications are (1) a KVS program using a 5K-entry

cache for 128b key and 16×32b value vector, and a 3×1K heavy-

hitter for statistics of missed queries; (2) an MLAgg program with

5K aggregators for 24×32b integer parameter vector; (3) an SQL

DISTINCT program with a 5K×8 rolling cache which filters queries

with 32b value.

Program Complexity (LoC). Table 1 illustrates the Lines of Code

(LoC) of the three programs in four frameworks. ClickINC programs

are 4-18, 4-12, and 28-35 times shorter than that Lyra, P4all, and

P416 ones, respectively. ClickINC’s modular programming reuses

existing modules (outperforming Lyra), its high-level language fea-

tures (e.g., loop) are more concise, and its multi-user programming

Table 2: Trials and manhour in programming

Language
KVS MLAgg MLAcc

of trials time # of trials time # of trials time
P416 12 ∼1h 14 ∼3h 6 ∼30m

ClickINC 1 ∼10m 2 ∼25m 0 ∼5m

Table 3: Developer Productivity of Placing Multi-user Pro-

gram over Multi-devices

Metrics Method KVS0 DQAcc0 MLAgg0 DQAcc1 MLAgg1 KVS1

of trials
P416 2 16 25 31 24 13

ClickINC 1

Time
P416 ∼5m >1h >4h >3h >2h ∼1h

ClickINC <10s

Device
P416 ToR5

ToR0,1;
Agg0,1

Agg0,1;
Agg4,5

ToR1,2;
Agg4,5

ToR2,3;
Agg2,3

Cores

ClickINC ToR5
ToR0,1;
ToR5

Agg4,5;
ToR5

ToR2;
Agg0,1

ToR2,3;
Agg2,3

Cores

Resource
P416 1 2 2.25 2 2 4

ClickINC 1 1.71 1.5 3 2 4

Comm.
P416 0 0.75 0.14 0.63 0.14 0

ClickINC 0 0.33 0.16 0 0.14 0

and synthesis allows user to only write INC specific logic (outper-

forming Lyra and P4all), and thus, the overall LoC is much shorter.

Developer Productivity.

• Individual Program Development. As a preliminary validation that

ClickINC can improve the programming productivity, one of our

authors with experience in P4 programming on Tofino writes the

three programs respectively using P416 and ClickINC on a single

device. Lyra and P4all’s compilers are not publicly available when

this work is done. A full study of the programmability of ClickINC

is outside the scope of this paper. Table 2 shows the number of

trials (a trial denotes a cycle of development, compilation, test, and

debug) and time spent in development. ClickINC can reduce the

development time by 6-7.2 times, and the developer makes very few

errors when developing in ClickINC (0 or 2 for three applications).

• Multi-user Program Placement and Synthesis. With the three indi-

vidual programs ready, we further let two students place multiple

instances of the programs into the network, one with ClickINC

and another manually. The topology is in Fig. 10, and all devices

are assumed to be Tofino switches. There are six INC program in-

stances: (1) KVS0, processing traffic {pod0(a), pod1(a)} → {pod2(b)},

(2) DQAcc0, {pod0(a), pod0(b)}→{pod2(b)}, (3) MLAgg0, {pod0(b),

pod1(b)}→{pod2(b)}, (4) DQAcc1, {pod0(b), pod1(a)}→{pod2(b)}, (5)

MLAgg1, {pod1(a), pod1(b)}→{pod2(b)}, and (6) KVS1, {pod0(b),

pod1(b)}→{pod2(b)}. Table 3 shows the final placement results, in-

cluding the time consumption and trials, and the placed devices,

normalized resource consumption, and communication overhead.

In the beginning, manually placing a program instance on multi-

ple devices is trivial, e.g., KVS0 on ToR5, because all devices have

abundant resources and the program does not need partition. But

the placement process gradually slows down as the resource usage

among devices becomes unbalanced, and the placement needs to

jointly consider partition legality, resources availability, commu-

nication overhead, and load balancing. For example, it takes more

than one and four hours to place DQAcc0 andMLAgg0, respectively.

In contrast, ClickINC automatically finds the optimal placement

plan, and synthesizes the programs. The process is fast (< 10𝑠 for
six instances), and error-free.

807

ClickINC: In-network Computing as a Service in Heterogeneous Programmable Data-center Networks ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Table 4: Placement Plan from DP and SMT algorithms

INC
program

depen-
dency

stages instructions time (s)
SMT DP SMT DP SMT DP

KVS 6 8 8 42 42 961 1.306
MLAgg 14 [8,6] [6,8] [14,11] [10,15] 559 0.754
DQAcc 6 [8,8,1] [6,8,3] [39,21,1] [35,16,10] 160 0.081

‘[𝑥, 𝑦, ...]’ in the stage column means that the devices in the chain use 𝑥, 𝑦, ...
stages, respectively; ‘[𝑥, 𝑦, ...]’ in the instructions column means that the devices
in the chain are assigned 𝑥, 𝑦, ... instructions, respectively.

(a) DP: w/o-Block denotes no
block construction

(b) DP: with block construction
(nop: no pruning)

(c) SMT

Figure 13: Compiling time on the number of devices.

7.4 Effectiveness of Placement Algorithm

Optimality.We compare the result of ClickINC’s DP-based allo-

cation algorithm with the Z3 [24] SMT-based one that is used in

existing solutions [8]. As the SMT solver is unable to handle a multi-

path topology in an acceptable time, we use a simple chain with

four Tofino switches, each switch with 8 pipeline stages. We place

the three programs (§7.3) and measure the algorithm execution

time and resource usage in the placement plan. We set the same

optimization goal as Eq. 1 for both algorithms. The result is shown

in Table 4.

The DP algorithm has a similar effect as the Z3 one in terms

of resource consumption and the number of involved devices. But

DP algorithm runs nearly one thousand times faster, thanks to the

pruning technique.

Usually, a longer instruction dependency with fewer instructions

indicates a smaller enumeration space and thus a lower processing

time. This explains whyMLAgg has a much shorter processing time

than KVS. On the other hand, KVS has many independent state-

ful operations (for realizing cache) per dependency level, which

degrades the pre-pruning effect, and thus consumes more compil-

ing time than DQAcc, even though it has fewer instructions than

DQAcc.

In addition, we also test the SMT algorithmwithout the optimiza-

tion goal. As a result, it saves about half of the searching time as the

algorithm only searches for a feasible solution; but it incurs larger

communication overhead as the program is partitioned across all

devices.

Impact of BlockConstruction andPruning.We compileMLAgg

with different settings of enabling/disabling block construction and

pruning and measure the compilation time. Fig. 13(a) and Fig. 13(b)

show the results. The two approaches can reduce the DP algorithm

execution time by more than 50% separately, and by more than 80%

together. Fig. 13(c) further shows that the DP algorithm has a linear

processing time with the number of devices while the SMT solver

has an exponential complexity.

Impact of Adaptive Weights. We place six instances of the three

programs MLAgg, KVS, and DQAcc on the path from pod0(a) to

pod2(b) in Fig. 10. The six instances are in the order of the second

row in Table 5. We turn on and off the Adaptive Weight (AW) to

observe its effects.

Table 5: Placement results with adaptive weights

Devices/(instructions)
MLAgg0 KVS0 DQAcc0 MLAgg1 KVS1 DQAcc1 MLAgg2

Fixed
weight

ToR0:
ToR5
/(6:60)

ToR0:
ToR5
/(34:47)

ToR0:
[Agg0,1]
/(3:25)

[Agg0,1]:
[Agg4,5]
/(7:59)

[Cores]:
[Agg4,5]
/(27:54)

[Cores]
/(28)

/

Adapt.
weight

[Cores]
/(66)

ToR0
/(81)

ToR5
/(28)

[ToR0:5]
/(33:33)

ToR0:[Agg
0,1]:ToR5
/(13:49:19)

[Agg4,5]
/(28)

ToR0:[Agg0,1]
:[Cores]:[Agg4,
5]/(10:4:20:32)

‘[·,·]’ indicates that instructions are duplicated on devices;
‘:’ indicates that instructions are partitioned on devices;
‘/’ represents INC plugin cannot be placed on any device.

Table 6: The impact of incremental deployment

Step
Incremental deployment Monolithic deployment
Affected
Devices

Affected
INC

Affected
traffic

Affected
Devices

Affected
INC

Affected
traffic

+KVS 2 0 3 pods 2 0 3 pods

+DQAcc 2 0 1 pod 2 0 1 pod

+MLAgg1 4 1 1 pod 8 2 3 pods

+MLAgg2 2 1 1 pod 4 3 3 pods

-MLAgg1 4 1 1 pod 8 4 3 pods

‘+’ or ‘-’ mean to merge or remove an INC program.

In the beginning, all devices run only the base program with

spare resources, and thus 𝜔𝑟 in AW is near zero, making KVS0

be placed on the four Core switches due to the dominance of 𝜔𝑝 ;

but for the fixed weight (FW), it is divided on the ToR0 and ToR5

switches to balance both communication overhead and resource

consumption.

As the placement proceeds, the remaining resources decrease,

the 𝜔𝑟 in AW increases, and the resource consumption begins to

dominate the placement. MLAgg1 could have been fully placed on

the Core switches but it is divided on ToR0 and ToR5. In addition

to the lower communication overhead, AW also has the advantage

that the remaining resources are more concentrated on several

devices than FW does, so it is more likely to hold a complete INC

program in one device in the future. This explains why MLAgg3

can be deployed in the AW experiment but not in the FW one.

7.5 Incremental Program Synthesis

We configure the INC programs to make them resource intensive

– KVS with a cache size of 100,000, MLAgg1 with 16-dimension

floating-point parameters, and MLAgg1 with 16-dimensional inte-

ger parameters.

KVS andMLAgg2 serve applications from pod0 (client) to pod2(a)
(server) while DQAcc and MLAgg1 serve applications from pod1 to
pod2(b). We assume there is always the background traffic from

pod0 and pod1 to pod2.
We place KVS, DQAcc, MLAgg1, and MLAgg2 one by one. Click-

INC performs incremental deployment (named ID), and we compare

it with monolithic deployment (named MD). MD synthesizes and

recompiles old and new programs each time. Table 6 shows the

placement results.

In the beginning, ID and MD behave in the same way. KVS is

placed on Agg4,5 which have a bypassed FPGA to help host a huge

cache. As Agg4,5 are sitting on the path of traffic from {pod0, pod1}
→ pod2, all traffic will be interrupted during program loading on

Agg4,5. DQAcc is placed on Agg2,3, and thus only affects traffic of

pod1 but not KVS in pod0.
When MLAgg1 is deployed, ID and MD start to behave differ-

ently. ID chooses ToR2,3 with the FPGA NIC (for floating-point

808

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Wenquan Xu et al.

calculation) and only affects traffic of pod1 including DQAcc pro-
gram; MD decomposes the synthesized program of MLAgg1 and

the old DQAcc (both from pod1 to pod2), which leads to instruction

removal from Agg2,3 and replacement on FNIC1,2 and ToR2,3,5 (be-

cause using ToR5 and ToR2,3 is more resource-efficient than using

Agg2,3 and ToR2,3), affecting all traffic and INC programs. To place

MLAgg2, ID only changes device of Agg0,1, and affects only the

traffic of pod0 and KVS; MD needs to synthesize KVS and MLAgg2,

which changes Agg0,1,4,5, thus affecting all traffic. In summary, in-

cremental program synthesis has a much smaller impact on traffic

than that of monolithic deployment which is more likely to incur

global traffic interruption.

8 DISCUSSION

This section discusses ClickINC’s scope and limitations.

Program isolation. For different INC programs on the same device,

ClickINC already achieves the function isolation and partial security

isolation, but it lacks the performance isolation. The function and

security isolation ensures the functions and resources of different

INC programs on the data plane are independent, i.e., a buggy INC

program cannot access the data and code of the other programs.

However, ClickINC cannot defend a malicious INC program from

tampering with the other programs intentionally by usurping the

system resource and bandwidth in a disguisedway.Measures should

be taken to ensure the performance fairness. Performance isolation

can be achieved by QoS rules and enforcement between users.

Parameter setting. Toward a user-friendly programming envi-

ronment, ClickINC adopts a high-level abstraction of network de-

vices, making device hardware, resource, and topology transparent

to users. However, without such knowledge, some users may be

puzzled in setting parameters for program especially for resource-

related parameters. ClickINC currently provides a primary parame-

ter automatical-setting model for programs derived from the pro-

vided templates by a pre-learned empirical estimation function but

cannot set parameters for user-written programs, as illustrated in

Appendix A.3. In the future, we will design a more general model

to set parameters for user-written programs according to user’s

performance metrics and available network resources.

Target users. ClickINC makes INC easy-to-use by application de-

velopers, isolating the roles of network operator and application

developer. Although in this paper, the ClickINC framework is pro-

posed mainly for application developers to eliminate their burden

of using INC, but it is also a good programming tool for network

operators. Next, we will focus on addressing developing difficulties

for network operators, and integrate the programming interfaces.

Program placement. Although ClickINC supports multi-path

program placement, it assumes the topology is fat-tree or spine-

leaf, and the devices in the same EC are the same in device type and

resources, so that the topology can be simplified. In the future, we

will improve the placement algorithms on the foundation presented

in this paper to support any multi-path topology with relaxed

assumptions on devices.

Supported architectures. Currently, ClickINC only considers

FPGA as a pipeline-based device which can provide more features

than switch ASICs. More potential can be explored in this space. Pro-

grammable chips with different architectures (e.g., Silicon One [3],

Spectrum [27], and Trio [34]) and target DSLs (e.g., DOCA [26],

Microcode [34]) can also be modeled and supported.

9 RELATEDWORK

INC Applications. Recent INC acceleration solutions only provide

a monolithic program that couples the application functions (e.g.,

key-value store, application data aggregation), the network func-

tions (e.g., reliability, packetization), and the programming abstrac-

tion and runtime environment of a specific platform. §5.1 lists the

examples of key-value store [17], synchronous aggregation [20, 30],

and database query [21, 33]. Besides, ASK [10] proposes a solution

for asynchronous key-value stream aggregation.

INC Frameworks on a Single Platform. A class of works aim

to improve the INC program development on a single platform.

Click [23] supports modular policy configuration on the control

plane for traditional routers. 𝜇P4 [31] allows modular programming

in data plane on PISA switches by composing reusable libraries.

P4all [11] advances modular programming by introducing elastic

parameters to be configured by the compiler based on an objective

function. NetRPC [36] proposes INC-enabled RPC system for sim-

plifying INC adoption; it pre-defines several operation primitives

on the switch and supports limited use cases. These three works

target on a single device. Flightplan [32] supports the partition

and distribution of a single P4 program on heterogeneous devices.

Its program needs to be manually partitioned based on empirical

decisions.

INC Frameworks on Multiple Platforms. The existing cross-

platform frameworks target different scenarios or users, and provide

different abstractions. Lyra [8] is a unified language for hetero-

geneous devices to hide hardware differences. It helps “network

operators” but not as much for the application developers: (1) Lyra

applies to programmable switches with pipeline-based ASICs; (2)

Lyra’s programming abstraction couples the network operations,

and multi-tenant application offloading, leading to a cumbersome

development; (3) Lyra only searches for a feasible solution based on

SMT solver that is time-inefficient for a large-scale network with

many devices.

10 CONCLUSION

ClickINC is the first work of its kind that truly decouples the INC

application development and deployment process from the network

and device details. The heavy lifting of ClickINC presents a sim-

ple programming interface to users and allows users to focus on

the application logic only. The clear split of duties ensures agile

development and quality deployment for new applications, helping

accelerate the adoption of the INC paradigm and enjoy the bene-

fits it offers. Extensive experiments show ClickINC is superior to

existing tools.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS

We thank our SIGCOMM reviewers for their insightful comments,

and publication chairs RichardMa and Xia Zhou for useful feedback.

This work is supported by NSFC (62032013, 62272258), and NSFC-

RGC (62061160489).

809

ClickINC: In-network Computing as a Service in Heterogeneous Programmable Data-center Networks ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

REFERENCES
[1] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,

Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, An-
dres Nötzli, et al. 2022. cvc5: a versatile and industrial-strength SMT solver. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 415–442.

[2] Pietro Bressana, Noa Zilberman, Dejan Vucinic, and Robert Soulé. 2020. Trading
latency for compute in the network. In Proceedings of the Workshop on Network
Application Integration/CoDesign. 35–40.

[3] Cisco. 2023. Silicon One. https://www.cisco.com/c/en/us/solutions/silicon-one.
html.

[4] Alibaba Cloud. 2023. SNA*: a hyper-converged programmable gate-
way. https://opennetworking.org/wp-content/uploads/2022/05/Dennis-Cai-
Final-Slide-Deck.pdf.

[5] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
made switch-y. ACM SIGCOMM Computer Communication Review 46, 2 (2016),
18–24.

[6] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. Netpaxos: Consensus at network speed. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research. 1–7.

[7] Python Software Foundation. 2020. In-band Network Telemetry (INT) Dataplane
Specification. https://p4.org/p4-spec/docs/INT_v2_1.pdf.

[8] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan Tian,
Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu. 2020. Lyra: A cross-platform
language and compiler for data plane programming on heterogeneous asics. In
Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication (SIGCOMM). 435–450.

[9] Einollah Jafarnejad Ghomi, Amir Masoud Rahmani, and Nooruldeen Nasih Qader.
2017. Load-balancing algorithms in cloud computing: A survey. Journal of
Network and Computer Applications 88 (2017), 50–71.

[10] Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao. 2023. A
Generic Service to Provide In-Network Aggregation for Key-Value Streams. In
Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. 33–47.

[11] Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jennifer Rexford,
and David Walker. 2022. Modular Switch Programming Under Resource Con-
straints. In 19th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 22). USENIX Association.

[12] Intel. 2021. Intel Tofino. https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-series.html.

[13] Intel. 2023. Introducing IPDK. https://opennetworking.org/wp-content/uploads/
2022/05/Deb-Chatterjee-Final-Slide-Deck.pdf.

[14] Intel. 2023. P4 Studio SDE. https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/p4-suite/p4-studio.html.

[15] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster, and Robert Soulé.
2018. Life in the Fast Lane: A Line-Rate Linear Road. In Proceedings of the
Symposium on SDN Research (SOSR).

[16] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. Netchain: Scale-Free Sub-RTT Coordina-
tion. In Proceedings of the 15th USENIX Conference on Networked Systems Design
and Implementation (NSDI).

[17] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching (SOSP). In Proceedings of the 26th ACM Symposium
on Operating Systems Principles.

[18] Arthur B Kahn. 1962. Topological sorting of large networks. Commun. ACM 5,
11 (1962), 558–562.

[19] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, Vyas
Sekar, and Srinivasan Seshan. 2020. Tea: Enabling state-intensive network func-
tions on programmable switches. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applications, tech-
nologies, architectures, and protocols for computer communication (SIGCOMM).
90–106.

[20] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, andMichael M Swift. 2021. ATP: In-network Aggregation for Multi-tenant
Learning. In NSDI. 741–761.

[21] Alberto Lerner, Rana Hussein, Philippe Cudre-Mauroux, and U eXascale Infolab.
2019. The Case for Network Accelerated Query Processing. In CIDR.

[22] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and Kishore
Atreya. 2017. Incbricks: Toward in-network computation with an in-network
cache. In Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS).
795–809.

[23] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. 2013. Composing software defined networks. In 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13). 1–13.

[24] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[25] NPL. 2023. Network programming language. https://nplang.org.
[26] NVIDIA. 2023. DOCA SDK Early Access. https://developer.nvidia.com/nvidia-

doca-sdk-early-access.
[27] NVIDIA. 2023. Spectrum SN4000 Open Ethernet Switches. https://www.nvidia.

com/en-us/networking/ethernet-switching/spectrum-sn4000/.
[28] ONF. 2023. P4 Open Source Programming Language. https://p4.org.
[29] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos

Kalnis. 2017. In-Network Computation is a Dumb Idea Whose Time Has Come.
In Proceedings of the 16th ACM Workshop on Hot Topics in Networks (HotNets).

[30] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. 2021. Scaling Distributed Machine Learning with In-Network Aggrega-
tion. In 18th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, 785–808.

[31] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster. 2020.
Composing dataplane programs with 𝜇P4. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication (SIGCOMM).
329–343.

[32] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang Han, Nis-
hanth Shyamkumar, Shivani Burad, André DeHon, and Boon Thau Loo. 2021.
Flightplan: Dataplane Disaggregation and Placement for P4 Programs. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 21).
571–592.

[33] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. 2020. Cheetah:
Accelerating database queries with switch pruning. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2407–2422.

[34] Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby, Scott Mackie, Swamy
Sadashivaiah Renu Kananda, Chang-Hong Wu, and Manya Ghobadi. 2022. Using
trio: juniper networks’ programmable chipset-for emerging in-network applica-
tions. In Proceedings of the ACM SIGCOMM 2022 Conference. 633–648.

[35] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong Wang, Luyang Li, Wenchen
Han, Nan Chen, Lebing Wan, Lichao Liu, Zhipeng Ding, et al. 2022. Tiara: A
scalable and efficient hardware acceleration architecture for stateful layer-4
load balancing. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). 1345–1358.

[36] Bohan Zhao, Wenfei Wu, and Wei Xu. 2022. NetRPC: Enabling In-Network
Computation in Remote Procedure Calls. arXiv preprint arXiv:2212.08362 (2022).

APPENDIX

Appendices are supportingmaterial that has not been peer-reviewed.

A CLICKINC LANGUAGE

This section explains the details of ClickINC language.

A.1 Templates

KVS. For KVS, it mainly contains a cache with exact-match to

maintain key-value results, a counter for counting hits of each

entry in cache, and a heavy hitter (count-min sketch plus bloom

filter) for recording missed queries. The configurable options are:

(1) the cache can be realized as using stateful array or stateless

matching table, which is decided by application requirements (e.g.,

the value dimension and size); (2) the cache depth (same as counter),

the number of counter-min sketch and bloom filters to compose a

heavy hitter; and (3) the type of hash functions, and the triggering

threshold of heavy hitter. All of these configurations are decided

by compiler, according to profile provided by users or as default.

MLAgg. MLAgg performs aggregation for distributed ML parame-

ters from different works, and the structure contains multiple arrays

working as aggregator to preserve aggregated parameters, bitmap

to track workers that have been aggregated, a counter to record

the number of aggregated parameters, and sequence to record the

ID of parameter for each stage ML job. The configurable options

810

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Wenquan Xu et al.

1 from Funclib import *
2 cache=Table(type="exact",keys=hdr.key ,vals=hdr.val)
3 cms=Sketch(type="count -min",keys=hdr.key)
4 bf = Sketch(type="bloom -filter", keys=hdr.key)
5 if hdr.op == REQUEST:
6 vals = get(cache , hdr.key)
7 if vals != None:
8 back(hdr={op:REPLY , vals:vals})
9 else:
10 count(cms , hdr.key , 1)
11 if get(cms , hdr.key) > TH:
12 write(bf , hdr.key , 1)
13 copyto("CPU", hdr.key)
14 elif hdr.op == UPDATE:
15 write(cache , hdr.key , hdr.vals)
16 drop

Figure 14: Example template of key-value store.

Table 7: ClickINC supported function list

kind function and operations

Python built-in

min(), max(), sum(), abs(), pow(), round(), range(), len(),

dict(), list(), +, -, *, /, %, //, <, >, ==, !=, ≤, ≥, =, &, |,

ˆ, ∼, <<, >>, and, or, not, in, not in.

ClickINC extension ceil(), floor(), sqrt(), randint(), slice()

are: (1) whether convert the floating-point parameter to an integer

one, which is decided by the accepted precision value in profile; (2)

whether filters sparse parts of parameters according to “is_sparse”

in profile; (3) the depth of aggregator (same for bitmap, counter,

sequence). The code of MLAgg is described in Fig. 15.

DQAcc. DQAcc provides the SQL DISTINCT in-network acceler-

ation, mainly relying on a hash-based rolling cache, i.e., multiple

arrays to store historical value, and a recorder to roll each value to

be replaced by new value (to approximate LRU). The configurable

options are: (1) the depth and width of the cache; (2) the type of

hash algorithms.

A.2 Profiles

A profile includes the following fields, and Fig. 16 shows an example

profile for KVS template.

App. App is the dedicated ID corresponding to each template, i.e.,

“KVS”, “MLAgg”, “DQAcc”. Performance. As also dedicated to

templates, performance provides an optional interface for users to

specify their performance requirements, as illustrated in Table 10.

For KVS, it supports an objective function “max_hit_acc” to allow

users to specify the performance preference over cache hit ratio and

counting accuracy of heavy hitter, and also it allows for specifying

demand on cache size; for MLAgg, the precision of parameter aggre-

gation (decides whether the conversion from floating-point number

to integer is feasible), the number of aggregators, and whether the

parameter is sparse can also be specified.

Traffic distribution. For both template and user-written program,

traffic distribution is required to provide the upper limit of the

querying frequency (packet per second) of each client, in the format

of {“client ID":“*pps", · · · }.

Packet format. The packet format also should be provided in the

profile, where the traditional network packet header below UDP

protocol can be abbreviated as a name, e.g., “ethernet/ipv4/udp”,

1 agg_seq_t = Array(row=1,size=Num_agg ,w=width(hdr.seq))
2 bitmap_t = Array(row=1,size=Num_agg , w=Num_worker)
3 agg_data_t = Array(row=len(hdr.vals), size=Num_agg , w=

width(hdr.vals))
4 valid_t = Array(row=1, size=Num_agg , w=1)
5 hash_f = Hash(key=hdr.seq , ceil=Num_agg)
6 index = read(hash_f , hdr.seq)
7 seq = read(agg_seq_t , index)
8 isvalid = read(valid_t , index)
9 delete = 0, overflow = 0
10 if hdr.op == ACK:
11 if isvalid and seq == hdr.seq:
12 delete = 1
13 forward(hdr)
14 else:
15 if !isvalid and !hdr.overflow:
16 write(agg_seq_t , index , hdr.seq)
17 write(bitmap_t , index , hdr.bitmap)
18 write(agg_data_t , index , hdr.data)
19 write(valid_t , index , 1)
20 elif seq == hdr.seq:
21 bitmap = bitmap_t.read(index)
22 if bitmap & hdr.bitmap == 0:
23 vals = agg_data_t.read(key=index)
24 new_vals = vals + hdr.data
25 for i in range(vals):
26 if new_vals[i] < 0:
27 overflow = 1
28 delete = 1
29 new_bit = bitmap|hdr.bitmap
30 if overflow:
31 mirror(hdr={'bitmap ':bitmap , 'data':vals ,'

overflow ':1})
32 forward(hdr)
33 elif new_bit = 2^Num_worker -1:
34 back(hdr={'op':REQ ,'bitmap ':new_bit ,'data':

new_vals })
35 delete =1
36 else:
37 write(agg_data_t ,index ,new_vals)
38 write(bitmap_t ,index ,new_bit)
39 drop()
40 else:
41 forward(hdr)
42 if delete:
43 del(agg_seq_t , index)
44 del(bitmap_t , index)
45 del(agg_data_t , index)
46 del(valid_t , index)

Figure 15: Example template of MLAgg

1 {"app" : "KVS",
2 "performance":
3 {"objective function": max 0.7hit+0.3acc ,
4 "content": >=1000, ...},
5 "traffic frequency": {c1: 10Mpps , c2: 20Mpps , ...},
6 "packet_format":
7 {"network": "ethernet/ipv4/udp",
8 "khdr": {"key": "bit_128"},
9 "vhdr": {"value_0": "bit_32"}, ...
10 } }

Figure 16: Configuration for KVS

but the application protocol header should be described in detail,

e.g., “key”:“bit_128”.

811

ClickINC: In-network Computing as a Service in Heterogeneous Programmable Data-center Networks ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Table 8: Basic functional unit list for IR

Operation Explanation Supported devices

_𝒓𝒂𝒎 1D-memory accessed by index All

_𝒄𝒂𝒎 content-addressable memory FPGA, NFP

_𝒕𝒄𝒂𝒎 ternary-content-addressable memory FPGA, NFP

_𝒆𝒎𝒕 stateless exact-match table All

_𝒔𝒆𝒎𝒕 stateful exact-match table FPGA, NFP

_𝒕𝒎𝒕 stateless ternary-match table All

_𝒔𝒕𝒎𝒕 stateful ternary-match table FPGA, NFP

_𝒍𝒑𝒎𝒕 longest-prefix-match table All

_𝒓𝒂𝒏𝒅 𝒊𝒏𝒕 achieve an integer random value All

_𝒄𝒓𝒄 CRC series hashing calculation All

_𝒊𝒅𝒆𝒏𝒕 𝒊𝒕𝒚 identity-map hashing Tofino series

_𝒂𝒆𝒔 AES series en(de)-crypto calculation FPGA

_𝒆𝒄𝒔 ECS series en(de)-crypto calculation NFP

_𝒄𝒉𝒆𝒄𝒌𝒔𝒖𝒎 csum16 calculation All

_𝒎𝒊𝒓𝒓𝒐𝒓 mirroring a packet All

_𝒎𝒖𝒍𝒕 𝒊𝒄𝒂𝒔𝒕 multicasting packet Tofino series, TD4

Table 9: Device capability abstraction

Classify of instructions

BIN Integer addition, subtraction; bit, logical operation; slicing.

BIC Integer multiplication, division, modulus.

BCA Floating-point arithmetic and other complex arithmetic.

BSO Stateful array operations.

BEM Exact-match table.

BSEM Stateful exact-match table.

BNEM (Ternary, LPM)-match table.

BSNEM Stateful (ternary, LPM)-matching table.

BDM Direct-match table.

BBPF Drop, send, copyTo.

BAPF Mirror, multicast.

BAF Hash functions (CRC8, CRC16, ...), checksum.

BCF (En, De)-crypto.

A.3 Configuring a Template

The modules and templates usually need to allocate resources on

devices, e.g., switch register memory. From the applications’ per-

spective, the resource allocation influences the end users’ perfor-

mance. During the user program development, ClickINC has no

idea about the runtime resource requirement; the users may not

have the knowledge about how to allocate switch resources and

their influences on the performance.

For certain applications, ClickINC can derive the resource re-

quirements directly from the performance metric; for example, an

MLAgg switch memory should equal to its bandwidth-delay prod-

uct [30]. There are applications without the mathematical models

to derive the resource requirements from the performance metric.

ClickINC provides a learning-based approach: it maintains histori-

cal records of given parameter x and the performance y, and learns

the performance estimation function y = 𝑓 (x) (e.g., 𝑓 (·) could be

a neural network and the learning method can be SGD). When a

user submits a configuration with application performance metric,

ClickINC searches for the parameter x with minimum resource

allocation that satisfies the performance requirements y.

min
y=𝑓 (x)

𝑔(x, y), 𝑠 .𝑡 .
∧

𝑖∈[1,𝑘]

ℎ𝑖 (x, y) ≤ 0, (4)

1 Prog ::== Declare | Operation
2 Declare ::== header | parse | data | instance
3 header ::== h_type string {hBody}
4 hBody ::== struct {hFields}
5 hFields ::== type <length > string
6 type ::== int | float | bit | bool
7 length ::== 1,2 ,...,1024
8 parse ::== cond? extract(hBody)
9 data ::== type string
10 instance ::== emt | semt| tmt | stmt | lpmt | cam |

tcam | ram
11 Operation ::== cond? statement | statement
12 statement ::== data = operand | operand
13 operand ::== data calc | instance act ion
14 act ion ::== write | get | drop | mirror | multicast |

randint | crc
15 | aes | ecs| calc
16 calc ::== + | - | * | / | % | bit operation | >>const

| <<const
17 condition ::== state | state&&state | state||state
18 state ::== data compare
19 compare ::== > | >= | == | <= | <

Figure 17: IR instruction syntax

Table 10: INC profile

Template KVS MLAgg DISAcc OPSketch DDoSAD

𝑷𝒆𝒓𝒇 𝒐-
𝒓𝒎𝒂𝒏𝒄𝒆

“max_hit_acc”

: [0.7, 0.3],

“depth”

: >= 1000

“precision_dec”

: 3

“is_sparse”: 0,

“depth”: >= 500

“c_depth”

: >= 1500

“c_len”

: >=8

“c_depth”

: >= 5

“c_len”

: >=800

“c_depth”

: >= 10

“c_len”

: >=2000

where 𝑘 is the number of performance metric constraints, 𝑔(x, y)
means the resource consumption, andℎ𝑖 (x, y)means the 𝑖-th dimen-

sion of performance metric is satisfied. The optimization problem

can be solved using gradient descent.

A.4 Intermediate Representation

The syntax of IR is described in Fig. 17, where the instance and

action are the basic functional units listed in Table 8. These units

can be further utilized by network operator to write a new object

and primitive module in Fig. 5 to update the library, which are

provided to developers for programming with frontend language.

Although the devices in the same architecture share some common

constraints, they exhibit their exclusive features as well due to

particular resource requirements, e.g., Trident4 supports the en(de)-

cryption while Tofino does not. Therefore, to map instructions to

the correct devices, we abstract the device capability in form of

atomic operations (e.g., CRC calculation) that are listed in Table 8,

and classify them into different types as shown in Table 9, which

helps to rule out impossible mappings during allocation.

B THEORIES ON PLACEMENT

B.1 Analysis of Program Partitioning

To ensure the correctness of process on program partitioning and

instruction block construction, we provide the following theory.

First, we define the partitioning legality as:

Definition B.1. Given the partitions of IR programP,∀𝑝1, 𝑝2 ∈ P,

there is no bidirectional traffic flow, i.e., 𝑝1 � 𝑝2.

812

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Wenquan Xu et al.

The partitioning legality ensures that any two partitions can be

separately placed on different devices.

Program partitioning. The data in program is two kinds: (1)

stateless data which is new for each round program execution and

the data change will not affect the next packet, e.g., an intermediate

variable; (2) stateful data, which is same for all packets and the data

change affects the next packet, e.g., a cache table. To ensure the

data consistency and correctness, stateful data cannot be duplicated.

Thus, the instructions with operations on the same stateful data

(we call them state-sharing instructions) cannot be partitioned on

different devices, i.e.,:

Lemma B.2. ∀ two instructions 𝑝1 and 𝑝2, if they are state-sharing,
the partitioning legality is unsatisfied.

Proof. Assume 𝑝1, 𝑝2 are placed on upstream device and down-

stream device respectively, if the stateful data is located on upstream

device, then after 𝑝1 is executed, the traffic flow to downstream

device to execute 𝑝2 which however needs to return to upstream

device for accessing the stateful data, causing bidirectional traffic

flow and violates partitioning legality; if the stateful data is located

on downstream device, then traffic will flow to downstream device

to access stateful data and return upstream device to complete 𝑝1,
and also violates partitioning legality. �

Thus, we need to group all state-sharing instructions together

as an inseparable partition. Following this, we construct a directed

graph for IR program as 𝐺 , where we the vertex is inseparable

state-sharing instruction partition or each other nornal instruction,

and the edge to describe instruction dependency.

As long as two instruction has direct dependency (i.e., the next

instruction uses the value generated by the previous instruction),

we use an directed edge to connect them from previous instruction

to the next one. For example, 𝑝1 → 𝑝2 indicates the instruction 𝑝2
directly depends on 𝑝1. Obviously, instructions with direct depen-

dency represents there exists data flow (the left value of 𝑝1 flows to
one of the right values of 𝑝2), i.e., 𝑝1 → 𝑝2 can infer that 𝑝1 ⇒ 𝑝2,
based on which we have:

Lemma B.3. The instruction 𝑝2 depends on 𝑝1 is equaling to 𝑝1 ⇒
𝑝2.

Proof. We first prove that 𝑝2 depending on 𝑝1 can infer 𝑝1 ⇒
𝑝2. If 𝑝1 has direct dependency with 𝑝2, i.e., 𝑝1 → 𝑝2, obviously
it equals to 𝑝1 ⇒ 𝑝2; if 𝑝2 indirectly depends on 𝑝1, we assume

there exists an instruction 𝑝𝑎 that has direct dependency with 𝑝1
and 𝑝2, i.e., 𝑝1 → 𝑝𝑎 and 𝑝𝑎 → 𝑝2. Then, we have 𝑝1 ⇒ 𝑝𝑎 ⇒ 𝑝2,
thus 𝑝1 ⇒ 𝑝2 and the statement is proved. Last, we should prove

that 𝑝1 ⇒ 𝑝2 can infer that 𝑝2 depends on 𝑝1. If the left value of
𝑝1 flows to 𝑝2, obviously 𝑝1 → 𝑝2; otherwise, we similarly assume

an instruction 𝑝𝑎 , and the left value of 𝑝1 flows to 𝑝𝑎 and 𝑝𝑎 ’s left
value flows to 𝑝2, and thus we have 𝑝1 → 𝑝𝑎 and 𝑝𝑎 → 𝑝2, i.e., 𝑝2
indirectly depends on 𝑝1, the Lemma B.3 is proved. �

Then, we have the following lemma:

Lemma B.4. Directed acyclic IR dependency graph satisfies the

partitioning legality.

Proof. Assume that the acyclic dependency graph violates the

partitioning legality, i.e., ∃ instructions 𝑝1, 𝑝2, 𝑝1 ⇒ 𝑝2 and 𝑝2 ⇐

𝑝1, thus we have 𝑝2 depends on 𝑝1 and 𝑝1 depends on 𝑝2 respec-
tively according to Lemma B.3. It means that 𝑝1 and 𝑝2 are cyclic in
dependency, which is impossible for Directed acyclic graph (DAG).

Therefore, the assumption is wrong and Lemma B.4 is proved. �

According to the above theory, we need to group the cyclic in-

struction on dependency graph as a hybrid vertex, so that becoming

a IR DAG and partition legality can be always satisfied.

Instruction block. The instruction block construction process

should also maintain the partition legality. In detail, given the IR

DAG 𝐺 = (𝑉 , 𝐸), we define the predecessor set for each vertex

𝑣 ∈ 𝑉 as P(𝑣) = {𝑥 ∈ 𝑉 | < 𝑥, 𝑣 >∈ 𝐸}. We apply the Kahn’s

algorithm [18], a variant of Topological sorting on 𝐺 to generate a

series of the Kahn’s partitionsK = {𝐾𝑖 }
𝑁𝐾
𝑖=1 , where𝑉 =

⋃𝑁𝐾
𝑖=1 {𝑣 |𝑣 ∈

𝐾𝑖 } and 𝐾𝑖 ∩ 𝐾𝑗 = ∅(𝑖 ≠ 𝑗). According to the Kahn’s algorithm,

for ∀𝑣 ∈ 𝐾𝑖 , 𝑖 ∈ {2, 3, · · · , 𝑁𝐾 }, P(𝑣) ⊂
⋃𝑖−1

𝑙=1 𝐾𝑙 holds. That is, any

predecessor vertex of a partition𝐾 must belong to a partition before

𝐾 , which leads to the following lemmas.

Lemma B.5. Given the Kahn’s partitionsK = {𝐾𝑖 }
𝑁𝐾
𝑖=1 for the DAG

𝐺 (𝑉 , 𝐸), ∀𝑣𝑚 ∈ 𝐾𝑖 , 𝑣𝑛 ∈ 𝐾𝑗 , if 𝑖 > 𝑗 , then 𝑣𝑚 � 𝑣𝑛 , where�means

a node cannot reach another node on the graph.

Proof. Assume ∃ 𝑣𝑚 ∈ 𝐾𝑖 , 𝑣𝑛 ∈ 𝐾𝑗 , 𝑖 > 𝑗 to make 𝑣𝑚 ⇒ 𝑣𝑛 hold.

Then 𝑣𝑚 ∈ 𝐾𝑖 is a predecessor vertex of 𝑣𝑛 ∈ 𝐾 𝑗 (i.e., 𝑣𝑚 ∈ P(𝑣𝑛)),

which means it is impossible for 𝐾𝑖 ⊂
⋃𝑖−1

𝑙=1 𝐾𝑙 . Therefore, the

assumption is wrong and Lemma B.5 is proved. �

Lemma B.6. Given Kahn’s partitions K = {𝐾𝑖 }
𝑁𝐾
𝑖=1 for the DAG

𝐺 (𝑉 , 𝐸), ∀𝑣𝑚, 𝑣𝑛 ∈ 𝐾𝑖 , if𝑚 ≠ 𝑛, then 𝑣𝑚 � 𝑣𝑛 .

Proof. Assume that ∃𝑣𝑚, 𝑣𝑛 ∈ 𝐾𝑖 , 𝑖 ≠ 𝑗 makes 𝑣𝑚 ⇒ 𝑣𝑛 . Then
𝑣𝑚 ∈ 𝐾𝑖 is the predecessor vertex of 𝑣𝑛 ∈ 𝐾𝑖 (i.e., 𝑣𝑚 ∈

⋃𝑖−1
𝑙=1 𝐾𝑙),

which contradicts with the assumption of 𝑣𝑚 ∈ 𝐾𝑖 . Therefore,

Lemma B.6 is proved. �

The following theorem is derived from the lemmas:

Theorem B.7. Given Kahn’s partitions K = {𝐾𝑖 }
𝑁𝐾
𝑖=1 for the DAG

𝐺 (𝑉 , 𝐸), ∀𝑣𝑚 ∈ 𝐾𝑖−1, 𝑣𝑛 ∈ 𝐾𝑖 , if < 𝑣𝑚, 𝑣𝑛 >∈ 𝐸, then no 𝑣𝑙 ∈ 𝑉 (𝑙 ≠
𝑚,𝑛) can make 𝑣𝑚 ⇒ 𝑣𝑙 and 𝑣𝑙 ⇒ 𝑣𝑛 .

Proof. Assume ∃𝑣𝑙 ∈ 𝐾 𝑗 (𝑙 ≠ 𝑚,𝑛; 𝑗 ∈ [1, 𝑁𝐾]) that makes

𝑣𝑚 ⇒ 𝑣𝑙 and 𝑣𝑙 ⇒ 𝑣𝑛 hold. We know 𝑗 ≠ 𝑖 − 1 and 𝑗 ≠ 𝑖 from
Lemma B.6. Then if 𝑗 < 𝑖 − 1, Lemma B.5 tells us that 𝑣𝑚 ∈ 𝐾𝑖−1 �

𝑣𝑙 ∈ 𝐾𝑗 , which violates the assumption. Similarly, if 𝑗 > 𝑖 , 𝑣𝑙 ∈

𝐾𝑗 � 𝑣𝑛 ∈ 𝐾𝑖 also contradicts with the assumption. Hence, 𝑗 does
not exist and Theorem B.7 is proved. �

B.2 Analysis of Device Equality

Starting from the initial device status that devices at a layer in

the same pod (we call them peer devices subsequently) are exactly

equal in resources, we prove that these peer devices can maintain

equality under our allocation algorithm.

Spine-leaf topology. Each leaf is connected with all the same

spine switches, and any path is the leaf-spine-leaf structure sharing

the common spines. Thus, it’s straightforward that all spines should

be allocated with the same part of an INC program and regarded as

the same device.

813

ClickINC: In-network Computing as a Service in Heterogeneous Programmable Data-center Networks ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

pod0 pod1 pod2 pod3 pod0 pod1

c1 c2 [c1,c2]

Figure 18: Example of full-clos fat-tree topology.

Full-clos Fat-tree topology. For a full-clos fat-tree topology, each

switch in a pod is fully connected with each of upper-layer switches

which should have a higher throughput capacity, as illustrated in

Fig. 18. In this case, the core switches are also fully shared by all Agg

switches, which is similar to spine-leaf topology and thus can also

be reduced as the same device, as illustrated in the right sub-figure

of Fig. 18.

Then, we should infer the equality of Agg switches in a pod. First,

we denote the INC program as instruction set [0, 𝑛] which should be
allocated along path pod0-pod1, and we assume program placed on

core switches are [𝑖, 𝑗], 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. Then [0, 𝑖) should be placed

on switches in pod0, and (𝑗, 𝑛] needs to be placed on switches in

pod1. Supposing the ToR0 switch in pod0 is allocated with instruc-

tions [0, 𝑝], as ToR0 connects with all Agg switches in pod0, these
Agg switches must be placed the same instructions (𝑝, 𝑛], making

other ToR switches e allocated with [0, 𝑝] correspondingly. Thus,
the equality of switches at the same layer in a pod is proved.

Device-equal Fat-tree topology. As illustrated in Fig. 19, this

topology targets that device of each layer has the same throughput

capacity. A 𝑘-fat-tree has 𝑘 pods and (𝑘2)
2 core switches, and each

layer in a pod has 𝑘
2 switches. In this topology, each Agg switch in

a pod fully connects with the 𝑘
2 core switches, which means these

core switches are shared by the current pod and can be reduced as

a device. Supposing the traffic is from pod0 to pod1, then we can

derive the topology as the right sub-figure shows in Fig. 19.

Thereafter, we need to prove the equality of Agg devices and

ToR devices in a pod. First, we still assume a instruction set [0, 𝑛] to
be placed along path pod0-pod1. For switches in pod0, we suppose
the placement is [0, 𝑝0] on ToR0, [0, 𝑝1] on ToR1, [𝑞0, 𝑘0] for Agg0,
and [𝑞1, 𝑘1] for Agg1. As ToR0 and ToR1 are both fully connected

with Agg0 and Agg1, we have 𝑝0 = 𝑝1 = 𝑞0 = 𝑞1, and the case

for switches in pod1 is similar. Thus ToR switches in the same pod

can also be reduced as a device. Then we can derive the topology

shown as the left-below sub-figure in Fig. 19, i.e., multiple paths

diverge from the same ToR device in pod0 and converge at pod1.
Fortunately, we can notice that the multiple paths are exactly the

same regardless of device type, available resources. Thus, for any

non-random allocation algorithm, the instructions placements on

these paths are absolutely same, i.e., the allocated instructions on

the Agg switches in pod0 are exactly same, and so are core switches

and Agg switches in pod1. That means these switches can be re-

duced to a single device respectively, and the topology shown as

the left-below sub-figure in Fig. 19 converts to a chain. Thus, the

equality of switches at the same layer in a pod is also proved.

pod0 pod1 pod2 pod3 pod0 pod1

c1 c2 c3 c4 [c1,c2] [c3,c4]

0

pod0 pod1

[c1,c2] [c3,c4]

[0,1] [2,3]
pod0 pod1

Figure 19: Example of device-equal fat-tree topology.

C PSEUDO ALGORITHMS

This section describes the core algorithms for program placement.

C.1 Block construction

Block construction is described in Algorithm 3.

C.2 Program merging

The program merging process is described in Algorithm 4.

D DEVICE MODELING AND CHIP RESOURCE
CONSTRAINTS

The architectures of programmable network devices are mainly

pipeline and run-to-complete (RTC). Some devices, e.g., Netronome

smartNIC and FPGA, can implements both pipeline and RTC, and

we call it hybrid device. ClickINC covers the resource constraints

of four major kinds of programmable chips: Tofino series ASIC,

Trident 4 switch ASIC, Netronome Network Processor, and Xilinx

FPGA. The constraints for other programmable chips can be mod-

eled similarly. Please refer to the material: http://arxiv.org/abs/2307.

11359 for the detailed chip resource constraints.

E DEPLOYMENT CONSTRAINTS

Each block 𝑣 should be allocated only once, and each instruction in

the block should be deployed:

∧
𝑣∈𝑉

[∑

𝑑∈𝐷

𝑥𝑣,𝑑
∧
𝑝∈𝑣

(
∨
𝑠∈𝑆𝑑

𝑎𝑝,𝑠) = 1
]

(5)

where 𝑥𝑣,𝑑 indicates whether primitive block 𝑣 is deployed on device
𝑑 , and 𝑎𝑝,𝑠 denotes whether primitive 𝑝 is deployed on stage 𝑠 .

Since the application throughput is bottlenecked at the device

with the minimal bandwidth, given the throughput requirement 𝐻 ,

we have the constraint:
∨

𝑙 ∈𝐿

[∧

𝑑∈𝐷 [𝑙]

(ℎ(𝑑) ≥ 𝐻 [𝑙])
]

(6)

where ℎ(𝑑) is the bandwidth of device 𝑑 .
Typically the application flow has a fixed forwarding path, which

raises two topology constraints: deployment scope 𝑇𝑠 (i.e., the

814

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Wenquan Xu et al.

Algorithm 3: Instruction block construction

Input: Primitives IR DAG𝐺 = (𝑉 , 𝐸) .
Output: the results of blocks𝐺𝑜𝑢𝑡 .

1 K ← Kahn_partition(G);

2 𝐺1 ←call intra_partition(𝐺);

3 𝐺𝑜𝑢𝑡 ←call inter_partition(𝐺1);

4 return𝐺𝑜𝑢𝑡 ;

5 Function intra_partition(𝐺):
6 𝑉1 ← ∅,𝑉 ← 𝐺.𝑉 ;𝐸1 ← 𝐺.𝐸;
7 for 𝑣1 ∈ 𝑉 do
8 P← {𝑣1 }; remove 𝑣1 from𝑉 ;

9 for 𝑣2 ∈ 𝑉 do
10 if 𝑣2 .𝑡𝑦𝑝𝑒 = 𝑃 .𝑡𝑦𝑝𝑒 then
11 if K(𝑣2) = K(𝑃) then
12 if P(𝑃) ∩ P (𝑣2) ≠ ∅ then
13 add 𝑣2 to P; remove 𝑣2 from𝑉 ;

14 combine in-edges of 𝑃, 𝑣2 in 𝐸1;

15 add P to𝑉1;

16 return𝐺1 = (𝑉1, 𝐸1) ;

17 Function inter_partition(𝐺1):
18 K ← 𝐾𝑎ℎ𝑛_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝐺1) ;

19 𝑉2 ← 𝐺1.𝑉 , 𝐸2 ← 𝐺1 .𝐸,𝑉 ← ∅;

20 while |𝑉 | < |𝑉2 | do
21 𝑉2 ← 𝑉 ,𝑉 ← ∅;

22 for 𝑖 from 0 to |K | − 1 do
23 for 𝑣1 ∈ K[i] do
24 P← {𝑣1 }, remove 𝑣1 from K[𝑖];
25 S← 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 (𝑣1) ∩ K [𝑖 + 1];

26 for 𝑣2 ∈ 𝑆 do
27 if K[𝑖 + 1] then
28 add 𝑣2 to P;

29 remove 𝑣2 from K[𝑖 + 1];

30 remove < 𝑣2, 𝑃 > from 𝐸2;

31 𝑎𝑑𝑑𝑃𝑡𝑜𝑉 ;

32 K ← 𝐾𝑎ℎ𝑛_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝐺2 = (𝑉 , 𝐸2));

33 return𝐺2 = (𝑉2, 𝐸2) ;

blocks can only be allocated on devices along the path), and deploy-

ment direction (i.e., the block execution sequence should match the

packet forwarding direction). The scope constraint is:
∑

𝑣∈,𝑑∉𝑇𝑠

𝑥𝑣,𝑑 = 0 (7)

and the direction constraint is:∧

𝑑𝑖 ,𝑑 𝑗 ∈𝐷 ;𝑣𝑘 ,𝑣𝑙 ∈𝑉

(𝐹𝑑𝑖 ,𝑑 𝑗
𝑅𝑣𝑘 ,𝑣𝑙 𝑥𝑣𝑘 ,𝑑𝑖𝑥𝑣𝑙 ,𝑑 𝑗

≥ 0) (8)

In the equation, 𝐹𝑑𝑖 ,𝑑 𝑗
denotes the deployment direction: 1 rep-

resents the forwarding direction, -1 vice versa, and 0 means no

direction needs to be enforced (e.g., for an FPGA-based acceleration

card attached to a switch); 𝑅𝑣𝑘 ,𝑣𝑙 denotes the dependency between

two blocks: 1 represents that 𝑣𝑙 relies on 𝑣𝑘 , -1 vice versa, and 0

means 𝑣𝑘 and 𝑣𝑙 are independent.
Similarly, dependent blocks on the same device should conform

to the pipeline direction:
∧

𝑠∈𝑆𝑑 ;𝑝𝑖 ,𝑝 𝑗 ∈𝑣

(𝑅𝑝𝑖 ,𝑝 𝑗𝑎𝑝𝑖 ,𝑠𝑎𝑝 𝑗 ,𝑠 = 0) (9)

The constraint ensures that no stage overlap occurs in the case that

𝑣 𝑗 depends on 𝑣𝑖 .

Algorithm 4: Program merging

Input: the parsing graph of INC program and main program𝑇𝑖𝑛𝑐 ,𝑇𝑚𝑎𝑖𝑛 ; the
dependency graph of INC program and main program𝐺𝑖𝑛𝑐 ,𝐺𝑚𝑎𝑖𝑛 .

Output: the whole parser and program𝑇𝑤 ,𝐺𝑤 .
1 𝑇𝑤 ← 𝑇𝑚𝑎𝑖𝑛,𝐺𝑤 ← 𝐺𝑚𝑎𝑖𝑛 ;

2 call Parsing_merger(𝑇𝑖𝑛𝑐 ,𝑇𝑤);

3 call Program_merger(𝐺𝑖𝑛𝑐 ,𝐺𝑤);

4 Function Parsing_merger(𝑇𝑖𝑛𝑐 ,𝑇𝑤):
5 for s in𝑇𝑖𝑛𝑐 .traversing do
6 𝑡 ← 𝑇𝑤 .𝑓 𝑖𝑛𝑑 (𝑠), 𝑝 ← 𝑇𝑤 .𝑓 𝑖𝑛𝑑 (𝑠.𝑝𝑎𝑟𝑒𝑛𝑡) ;
7 if t = None then
8 𝑎𝑑𝑑_𝑠𝑜𝑛 (𝑝, 𝑠), 𝑎𝑑𝑑_𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 (𝑠) ;
9 𝑎𝑑𝑑_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (𝑝, 𝑠), 𝑎𝑑𝑑_𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛_𝑖𝑛 (𝑝) ;

10 𝑎𝑑𝑑_ℎ𝑑𝑟 (𝑠.ℎ𝑑𝑟), 𝑎𝑑𝑑_𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 (𝑠.ℎ𝑑𝑟) ;

11 else 𝑎𝑑𝑑_𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 (𝑡) ;

12 Function Program_merger(𝐺𝑖𝑛𝑐 ,𝐺𝑤):
13 if d∈ Pipeline then
14 𝐶𝑖𝑛𝑐 ← 𝑐ℎ𝑎𝑖𝑛 (𝐺𝑖𝑛𝑐),𝐶𝑤 ← 𝑐ℎ𝑎𝑖𝑛 (𝐺𝑤) ;

15 for s in𝐶𝑖𝑛𝑐 do
16 𝑝 ← 𝑔𝑒𝑡_𝑖𝑛𝑠_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑠,𝐶𝑤) ;

17 𝐶𝑤 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝, 𝑠), 𝑎𝑑𝑑_𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛_𝑏𝑒 𝑓 𝑜𝑟𝑒 (𝑠) ;

18 else
19 𝐺𝑤ℎ𝑜𝑙𝑒 ←𝑚𝑒𝑟𝑔𝑒_𝐷𝐴𝐺 (𝐺𝑖𝑛𝑐 ,𝐺𝑤) ;

20 𝐿 ← 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑠𝑜𝑟𝑡 (𝐺𝑤ℎ𝑜𝑙𝑒) ;

21 for e in𝐺𝑖𝑛𝑐 do
22 𝑝 ← 𝑔𝑒𝑡_𝑙𝑒𝑣𝑒𝑙 (𝑒, 𝐿) ;
23 𝐺𝑤 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝, 𝑠), 𝑎𝑑𝑑_𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛_𝑏𝑒 𝑓 𝑜𝑟𝑒 (𝑠) ;

Furthermore, the dependent primitives cannot be placed on the

same pipeline stage. For Tofino series chips, there is a particular

circumstance: a non-matching-table primitive can be placed in the

same stage with the matching table that it depends on, to construct

a match-action structure as long as they share the same conditional

statement. We use 𝑅𝑝𝑖 ,𝑝 𝑗 to denote the dependency between 𝑝𝑖 and
𝑝 𝑗 , where 1 represents 𝑝 𝑗 depends on 𝑝𝑖 , -1 vice versa, and 0 means

𝑝𝑖 and 𝑝 𝑗 are independent. The primitive dependency constraint is:∧
𝑠∈𝑆𝑑 ;𝑝𝑖 ,𝑝 𝑗 ∈𝑣

[
(𝑅𝑝𝑖 ,𝑝 𝑗𝑎𝑝𝑖 ,𝑠𝑎𝑝 𝑗 ,𝑠 = 0)

]

∧

𝑑∈𝑇𝑜𝑓 𝑖𝑛𝑜

𝑅𝑝𝑖 ,𝑝 𝑗𝑎𝑝𝑖 ,𝑠𝑎𝑝 𝑗 ,𝑠 (1 − 𝑐𝑎𝑠𝑒) = 0
(10)

where 𝑐𝑎𝑠𝑒 is (𝑅𝑝𝑖 ,𝑝 𝑗 = 1) ∧ (𝑝𝑖 ∈ B𝐸𝑀 + B𝑁𝐸𝑀) ∧ (𝑝 𝑗 ∉ B𝐸𝑀 +

B𝑁𝐸𝑀) ∧ (𝑐𝑜𝑛𝑑 (𝑝𝑖) = 𝑐𝑜𝑛𝑑 (𝑝 𝑗))), and 𝑐𝑜𝑛𝑑 (·) denotes the require-
ment on conditional statement. Through the above mapping, prim-

itives satisfied with the constraint can be constructed as match-

action table structure.

Pipeline switch have separate pipelines 𝜉𝑖𝑔 and 𝜉𝑒𝑔 for ingress

and egress, respectively (i.e., 𝑆𝑑 = 𝜉𝑖𝑔+𝜉𝑒𝑔). The instructions related
to forwarding decision can only be deployed at ingress. Denoting

these instructions as F𝑓 𝑑 , we have:∑

𝑝∈F𝑓 𝑑 ,𝑠∈𝜉𝑒𝑔

𝑎𝑝,𝑠 = 0 (11)

815

