
Protocols to Support Autonomy and Control for
NFV in Software Defined Networks

Ali Mohammadkhan∗, Guyue Liu‡, Wei Zhang‡, K. K. Ramakrishnan∗, and Timothy Wood‡
∗University of California, Riverside
‡The George Washington University

Email: {amoha006, kk}@ucr.edu and {timwood, guyue, zhangwei1984}@gwu.edu

Abstract—The use of Network Function Virtualization to run
network services in software enables Software Defined Networks
to create a largely software-based network. We envision a dy-
namic and flexible network that can support a smarter data plane
than just simple switches that forward packets. This network
architecture needs to support complex stateful routing of flows
where processing by network functions (NFs) can dynamically
modify the path taken by flows, without unduly burdening or
depending on the centralized SDN controller. To this end, we
specify a protocol across the different components of an SDN-
NFV environment to support the creation of NFs required by
a service graph specification, using an orchestrator speaking to
an NF Manager running on each host. We take advantage of,
and extend, the concept of the SDN controller-to-node protocol
(OpenFlow being the most popular) and tagging flows to support
complex stateful routing. Output generated by NFs processing
packets may be returned to the NF Manager to influence dynamic
route changes based on a priori rules defined through a service
graph specification provided by network administrators. We
envisage the SDN controller setting up these rules based on the
output from NFs, the flow specification as well as global tags.
By not treating tags as an independent component for routing,
we show that we can dramatically reduce the number of tags
required across the entire network. Further, by providing the
right autonomy in decision making at the NF Manager and
the individual NFs in our hierarchical control framework, we
significantly reduce the load on the SDN controller.

Index Terms—Software Defined networking, network function
virtualization, network function placement.

I. INTRODUCTION

Software Defined Networking (SDN) promises to provide
greater flexibility for precisely directing packet flows using
a software-based control plane for the network. The underly-
ing assumption is that the data plane is simple, comprising
commodity switches, with little or no state other than the for-
warding table of ‘match-action’ rules populated by a logically
centralized SDN controller. However, today’s networks are
much more than just packet forwarding entities, with complex
network services prevalent in custom-built middlebox systems
at the edges of the network. Network Function Virtualization
(NFV) has emerged as a technique to run high performance
network services as software running in virtual machines
(VMs) on commodity servers. NFV thus enables easy de-
ployment of software-based network functions dynamically in
the network, at a much lower cost. Both these technologies
promise to radically alter how networks are deployed and

managed, offering greater flexibility and enabling network
services to be added on demand.

In our SDNFV architecture [1], we use the SDN controller
and the NF orchestrator, coordinated by an SDNFV Appli-
cation to create a more flexible and dynamic network: the
SDN controller manages the network control plane [2] and the
NF Orchestrator manages NFV instances and their flow state
[3]. The SDNFV architecture is consistent with ETSI NFV
architecture [4], with some differences, as we extend the ETSI
model’s adherence to the stricter control plane - data plane
separation espoused by the SDN architecture. For example
orchestration roles of NFV Management and Orchestration
unit is assigned to the NF Orchestrator and management duties
are assigned to SDN controller. A placement engine decides
how functions are instantiated across the network, and the NF
VMs on each host are controlled by an NF Manager. This
paper focuses on the protocols that split control across this
hierarchy—exploiting the application-awareness of individual
NFs, the host-level resource management capabilities of the
NF Manager, and the global view provided by the SDN
Controller and the SDNFV Application.

One of the approaches for managing complex middlebox
deployments considered in the previous work [5], [6] is to
introduce additional information in the form of tags to mark
packets processed by a middlebox, and use the tag to indicate
the result of the processing to the SDN controller. The SDN
controller may then use this information to re-route the flow,
potentially on a path that might appear to have loops when
viewed at the network layer, but is required to route the
flow through different middleboxes connected to the same
switch [5]. In the FlowTags approach [6], an NF first receiving
a tagged flow will ‘consume’ the tag after contacting the
controller to elicit its meaning. However, existing approaches
result in significant overhead due to the need for frequent com-
munication with the SDN controller to generate and interpret
tags. Further, the amount of packet header space dedicated to
tags may become unreasonable since a large number of unique
tags are needed to differentiate each hop in the path, for all
the flows in the network.

To achieve our goal of having hierarchical control where
both a smarter data plane and a logically centralized SDN
controller have the capability to route flows appropriately as
well as dynamically instantiate functions in the network, we
also leverage the idea of using tags as in FlowTags [6], but

SDNFV Application

Entrance SDNFV Switch

SDN
Controller

Placement
Engine

NF
Orchestrator

Flow
Mapper

NF Manager

Service Chain
Manager

NF 0

NF 1

OpenFlow
Switching
and table

Flow Mapper

Fig. 1. System components and their interactions (All the other switches are
similar to the entrance switch but they do not have the Flow Mapper in them.)

suitably enhanced. We use the tags only when their existence is
crucial and a forwarding decision would be ambiguous without
using the tags. We have designed a set of protocols so that NFs
can impact the route for a flow (or a class of flows), as well as
communicate information such as the flow’s state to the higher
levels in the control hierarchy (the NF Manager and the SDN
Controller). Our work makes the following contributions:

• A hierarchical architecture to efficiently and flexibly
combine SDN and NFV.

• An approach for supporting diverse NF service chains that
support dynamic routing of flows based on the output of
the NFs, even for NFs changing headers such as a NAT
or for NFs affecting upstream NFs in the chain.

• Leveraging an SDN controller’s knowledge about net-
work topology and NF placement to limit the use of
tags only to essential cases, where routing is ambiguous
without their existence.

• Protocols across the SDN/NFV hierarchy that minimize
the amount of communication with the SDN controller
by exploiting the intelligence in the software-based data
plane.

We evaluate the benefits provided by our architecture in terms
of reducing SDN control message overhead and the number
of distinct tags (and thus the additional header space) required
network-wide.

II. SYSTEM COMPONENTS

Our SDNFV architecture provides a hierarchy of control
with NFs at the bottom and the SDNFV Application at the
top, as illustrated in Figure 1. In this section, we explain the
role of the components in the architecture.

SDNFV Switches: The commodity servers running NFs in our
platform are called SDNFV Switches, since we view them as
“smart switches” that can be deployed in the network to not
only forward packets, but also apply complex functionality to
packet flows. As software based switching achieves near-wire-
rate performance [7], [8]—even in virtual environments [9],
[10]—the distinction of having NFs in COTS servers versus
specialized switching hardware is likely to blur, and our SD-
NFV architecture recognizes this evolution. SDNFV switches
interact with both the SDN controller and the NF orchestrator.

Network Functions (NFs): Today’s networks comprise
many different functions beyond simple forwarding. These in-
clude middleboxes such as firewalls, proxies, network address
translators (NAT), etc. In our architecture, NFs are able to
generate an output when they process a packet. This output
is send to NF Manager by using the shared memory between
the NFs and the NF Manager.

NF Manager: Each SDNFV Switch may run multiple NFs
coordinated by a single NF Manager on that host. The NF
Manager is a software layer between the NFs and the operating
system of the SDNFV switch. The NF Manager is responsible
for managing NFs residing on the host (creating instances,
forwarding packets to and between NFs), and controls the
OpenFlow-like forwarding table. All the interaction to external
network components (such as the SDN Controller, the NF
Orchestrator) with NFs is mediated through the NF Manager.
SDNFV Application: At the top of the hierarchy is the
SDNFV Application. This is where the network administrator
specifies the overall application logic that will control where
NFs are instantiated and how packet flows will be routed
through them. The SDNFV Application has four main com-
ponents:

Service Chain Manager: This provides an interface to
define sequences of NFs (e.g., middlebox functions) traversed
in a specified order. These service chains can be dynamic, in
that the output of an NF can result in forwarding the packet
(or subsequent packets of the flow) to one of several different
NFs. Thus, the chain is actually a graph with branches based
on NFs outputs, rather than a linear sequence. Several example
service chains are shown in Figure 2. Each service chain is
given a Chain ID and a priority. When a packet flow matches
the criteria for multiple service chains, the service chains are
applied in priority order.

Flow Mapper: After defining a service chain, we need to
assign it to the appropriate packet flows. In its simple form,
the mapping may be predetermined by a network administrator
based on the IP 5-tuple, including the wild-carding of some
fields. For more complex situations, where the decision has to
be based on the state of the flow (or related to multiple flows),
the flow mapping may be done dynamically as packets arrive.
This task is carried out by a flow-to-service chain mapping
engine implemented as a part of the SDNFV Application or
as one of the NFs in the entry switches. In the former case,
new flows are sent to SDN controller and in the latter, the
result of flow mapper NF is sent to SDN controller. Using
NFs to perform flow classification, as shown in Figure 1, may
be preferable if detecting the flow type is computationally
intensive.

Placement and Routing Engine: The Placement Engine
receives information about the flows, the service graph for
those flows and the current network conditions (e.g., available
capacity, topology) to decide where to instantiate NFs. We
have proposed a mixed integer linear programming (MILP)
solution for this complex problem, as well as heuristics to
obtain results close to the optimal solution, in reasonable
time [11]. The heuristics also enable us to solve the problem

Firewall

IDS

Deep
Packet

Inspection

Video
Detector

Policy
Engine

cache

Transcoder Shaper

Suspicious

Clean

Restricted

Normal

Miss

Hit

ChainID = 10, Priority = 1 ChainID = 11, Priority = 2

Clear
-IDS:Suspicious

Remove Policy

Firewall(Remove Policy)

NAT

Fig. 2. A sample cluster of service chains

incrementally so that assignment of NFs to already established
flows are not impacted by new incoming flows.

NF Orchestrator: The NF Orchestrator receives instanti-
ation or migration requests from the Placement Engine (e.g.,
when a new service chain is deployed) and from NF Managers
(e.g., when a server is becoming overloaded and a new
replica NF is needed). It then deploys new VMs to run the
appropriate functionality. It also handles the movement of state
and syncing of the state between different replicas of an NF
in conjunction with the respective NF Managers [3].
SDN Controller: The SDN Controller learns of the overall
network goals from the SDNFV Application via its northbound
interface, and communicates with NF Managers via its south-
bound interface. The protocol between the controller and the
SDNFV switch needs to be enhanced, so that stateful control
can be exercised by the NF Manager.

As is becoming the common practice, we favor a proactive
setting up of the default forwarding (’match-action’) rules by
the SDN controller rather than reacting to the first packet
of newly recognized flows. We also proactively set up the
different alternate paths defined by the service chain for a flow
that would be chosen dynamically as a result of the processing
at an NF.

III. HANDLING SERVICE CHAINING

In this section we focus on the characteristics and special
requirements of different service chains. As mentioned earlier,
a service chain is a sequence of services that a flow needs to
pass before leaving the network. We discuss the details of our
protocol messages in Section IV.

A. Static Chains

A service chain is static when the sequence of NFs in the
service chain is defined in advance, and it is not dependent
on the output of NFs. Otherwise, a service chain is dynamic.
F1 and F2 in Figure 3 are examples of static service chain
and F3 is an example of dynamic service chain. While static
chains may at first seem trivial to handle, in fact they may still
require flow tags to properly route flows if the implementation
of the service chain includes a cycle, causing a switch to be
visited more than once.

NF1 NF2 NF3

NF7 NF8 NF9 NF10 NF11 NF12

NF4 NF5 NF6

F1

F2

F3

SDNFV Switch 1 SDNFV Switch 2

SDNFV Switch 4SDNFV Switch 3

Fig. 3. A set of three service chains traversing NFs at four SDNFV Switches.

Unambiguous static flows: We first address the simplest
case where the static flow is recognized unambiguously at an
SDNFV switch. This occurs when the flow just traverses this
switch once, or if it is traversed multiple times, each visit
is distinguishable from other visits. For example the input
interface may be different between different visits. In this
case, the forwarding decision can be made using available
information and without any need for additional tags. Note that
this applies even if a flow has to be processed consecutively
at multiple NFs that reside on the same SDNFV Switch as a
virtual port can be leveraged to recognize the flow’s state. This
is shown in Figure 3 where flow F1 traverses three different
NFs on two different SDNFV Switch hosts; on each host the
NF Manager enforces the correct NF processing order.

Ambiguous static flows: When a flow has to visit the same
SDNFV switch more than once and the input port is the same,
there is a need to differentiate the arrivals so as to forward
the packet to the NFs correctly. For example, if Flow F2 in
Figure 3 does not have a tag (or some kind of persistent state
in the NF, which we avoid) there is no way to determine which
NF is supposed to examine the packet next since its n-tuple
will be identical both times it arrives at the host.

To solve this problem we use a flow tag carried in the packet
to indicate the stage of processing. Rather than use a unique
tag for each stage (as has been done in previous work [6]), we
only generate a tag for the ambiguous hops in a path where
they are needed, and we interpret the tags in conjunction with
the flow identified by the n-tuple in the packet header and the
switch input port. This reduces the number of tags required
across all the flows in the network.

Tags that assist with routing across SDNFV Switches are
added to packets by the NF Manager. When the SDN Con-
troller configures the flow table rules in the SDNFV Switch,
for example to make Flow F2 send packets from NF8 to NF2,
it will include a tagging action as part of the flow table entry.
Likewise, the flow rules on the switch receiving the packet will
be configured to include the tag as part of the match criteria
to determine processing. We call this tag a global tag or GTag
since it is not local to a single host, but transmitted as part of
the packet.

B. Dynamic Chains

Active NFs can produce different outputs for different
packets. For example, a cache may produce a Hit or a Miss
as outputs. Flows may need to go to different NFs based on a

Hit or Miss. The chain containing these active NFs is called
a dynamic chain.

In this paper, the outputs of active NFs are called NFOut-
puts. The NFOutput is written to the packet descriptor, a
software data structure in the NFV platform, not in the packet
itself, since it is only used locally at that host. (An approach
similar to E2 [12] can be used.) The NF Manager, using rules
defined in the SDNFV Application and installed by the SDN
Controller, knows how to interpret this output to select one
of the possible next hops. This allows NFs to provide input
on how packets should be routed, but leaves the SDNFV
Application in charge of determining how those outputs are
interpreted. It also reduces communication overheads by elim-
inating excessive and unnecessary calls to the SDN Controller.

Ambiguity in routing can arise, in a manner similar to static
chains. We use the following solution. The SDN Controller is
aware of all the possible paths of a flow. It creates a union of
all the paths of this flow, and executes an algorithm similar to
what was used for a static chain, on the resulting set. Thus,
we can recognize the points where there is ambiguity for a
flow for which a global tag is needed. For example, in a static
chain, if a flow were going from Switch 1 to Switch 3 twice,
we would consider it an ambiguity, needing a tag to resolve
the ambiguity. With dynamic chains, even if some packets of
a flow first go from Switch 1 to Switch 3 in Path 1, while
other packets of that same flow go from Switch 1 to Switch
3 in Path 2, there is still a point of ambiguity needing global
tags to resolve it.

NFs may affect the routing of flows in different ways.
For example, they can affect the routing at an upstream or
downstream node. Also they can affect the routing temporarily
or permanently. The temporary impact on routing by the
output of an NF is only on the current packet. Whilst an
NF’s output may affect the routing of a flow permanently
such that all the packets of the flow follow a different route
until another output from an NF is observed. Underlined
edges in Figure 2 show the permanent edges in those chains.
Affecting the downstream means the route to subsequent NFs
for the flow is altered. Upstream implies the routing to NFs
upstream of the NF that produces the output is altered, for
future packets of this flow. Dashed lines in Figure 2 indicates
the upstream edges, while the other edges are downstream
edges. Handling downstream and temporary actions is done
in a manner similar to static chains. Here, we only focus on
persistent and upstream actions.

Persistent Actions: In some cases, it is desirable for an NF
to make a decision not only on a single packet, but on all
the remaining packets in the flow. For example, an IDS NF
may mark individual packets as being ’clean’ using temporary
actions, but when it detects something ’suspicious’, it may
wish to send all remaining traffic to a Deep Packet Inspection
engine for further analysis. Our platform supports this through
persistent actions, which allow an NF to produce an NFOutput
that will be used by the NF Manager to adjust the flow table
entry, causing all subsequent packets to bypass the NF which
produced the tag and proceed directly to the next NF.

Upstream Actions: Sometimes it is necessary to change the
routing upstream based on the output of an NF downstream.
In this case, the NF Manager may have rules set by the SDN
controller to forward information back to the SDN controller.
The SDN controller uses this information to indicate that a
prior NF in the chain should cancel its persistent action, or
cause a new action to take place. For this, we extend the
OpenFlow messaging framework to enable the SDN controller
to send the name of the NF to the upstream NF Manager,
and include in it the identity of the flow (IP n-tuple) and the
specification of the new action (which we describe in the next
section). Upstream actions can work in two ways. First they
can reverse the effect of persistent output like the ”Clear” edge
in Figure 2). They can also simply change the path from an
upstream switch (e.g., ”remove policy” edge in Figure 2).

Handling header changing NFs: There are circumstances
where an NF may change the packet header (e.g., network
address translation (NAT)), thus requiring additional informa-
tion to ensure the flow is handled appropriately. However, un-
like [6], we divide the service chain into multiple segments—
the first is from the entry switch to the first NF that changes the
header. The flow is routed through SDNFV switches normally
using the n-tuple of the packet. For the segment of the service
chain after the ’header changing NF’, tags are added to the
packet as necessary. Note that not all of the fields of a header
might be changed by the NF. For example, a NAT does not
change the destination IP address and port number for an
outgoing packet (towards the public Internet). Thus, given that
the tag can be associated with specific fields of a packet, we
associate it with the destination IP and port. Thus, the same tag
value can be re-used for different destination IP and port pairs,
thus again resulting in a significant reduction in the number of
tags required (especially as there is likely to be diversity in the
destinations of the flows traversing the NAT). Our solution can
support multiple service chain segments if needed, although
we expect this to be a rare situation.

IV. PROTOCOL AND INTERFACES

We now describe the interfaces and protocol primitives for
information exchange among SDNFV’s system components.
We note that instead of making changes and adding new
fields and matching rules to OpenFlow to support concepts
such as GTag and NFOutput, it is possible to reuse unused
fields in the OpenFlow protocol. This is possible because the
number of unique GTags and the number of bits necessary for
communicating the NFOutput needed in our proposed method
is small compared to existing approaches.

A. Protocol between NF Manager and SDN controller

The OpenFlow protocol addresses a number of interactions
between an SDN Controller and a network switch. These are
also used in SDNFV switches for setting up flow tables. We
now look at the functionality needed in the context of the
SDNFV switch hosting NFs. The administrator, and thus the
SDNFV Application, SDN Controller and NF Orchestrator
know a priori the capabilities of the network nodes and links.

We anticipate that most of the Flowtable rules would be set
proactively and the necessary NFs for flows based on defined
service chains have been instantiated by the orchestrator in
coordination with the SDNFV application.

Unambigious static flow routing: When routing flows from
a passive NF that is part of a static service chain, the SDNFV
switches use the OpenFlow tables set up by the SDN controller
with the existing OpenFlow protocol primitives (e.g., based
on a match-action rule using the IP 5-tuple) through SDNFV
switches as in a typical switch. This would be the case
also when the flow is routed through a static path on the
SDNFV switch, since the flow’s route is unchanged. Note,
we use a different logical port at the SDNFV switch to enable
forwarding to the different local NFs.

Unambigious dynamic flow routing: With active NFs, we
use NFOutputs to modify the route out of an SDNFV switch.
The match-action rule would be enhanced by the SDN con-
troller as:

{5-tuple, NFOutput, In port} → outPort
Thus, the NF Manager includes the NFOutput produced by
the NF and uses this to assist in selecting the next stage in the
service chain.

Routing ambiguous flows: Global tags or GTags are used
to enable NFs to influence the path of dynamic flows and to
handle a flow arriving at the same SDNFV switch multiple
times. In the latter case, when an SDNFV switch is shared
among the different paths of a flow, a global tag is used to
carry the current ’state’ (visit) of the flow to enable the switch
to forward the packet to the proper next hop. Rather than
having a packet with a tag be forwarded to the controller as
in [6], we depend on the SDNFV switch to make the routing
decision using the tag. The forwarding table rule from the
SDN controller to the NF Manager is enhanced as:

{5-tuple, NFOutput, GTag, In port, Push, Pop} → outPort
GTag is the global tag. When an SDNFV switch has to insert
a tag header as the packet leaves the switch, the Push flag
is set in the flow table. When Push is 0, an SDNFV switch
simply forwards based on the tag header. The tag header is
removed by the NF Manager at a switch where the flow table
entry has the Pop flag set to 1, possibly based on the GTag
value. GTag is added to the packet before the switch where
the ambiguous visits of the packets occur. For example if the
packets of a flow go from Switch 1 to Switch 5 two times in
different parts of their path, routing in switch 5 is ambiguous
and GTag is added to the packet on Switch 1 and it is used
at Switch 5 for routing the packet to next steps. GTag may
be changed to another GTag later, based on need, to address
further ambiguities. The GTag is removed by the last switch
in the path.

Request for a change upstream: The output of an NF that
changes routing upstream or decisions of upstream NFs has to
be mediated by the SDN controller. The reversal of a decision
at an upstream NF is communicated by the downstream NF
(through its NF Manager) to the controller, to then be used to

set the flow table entry at the upstream SDNFV switch as:

{5-tuple, NFOutput, GTag, In port, persistent} → outPort
The flow is identified by the 5-tuple, potentially along with
GTag. The NFOutput is used to communicate information to
the local (downstream node’s) NF Manager. The ’persistent’
flag when set to 1 is used to indicate that the persistent decision
at the upstream NF (as defined by the service chain) must
be changed. Otherwise, it is a request for a normal change
(without the tag) at the upstream NF.

Information for header-changing NFs: When an NF
changes the header of the packet (e.g., by a NAT) and routing
decisions at subsequent SDNFV switches have to be set by the
controller, a global tag has to be added by the NF Manager
at that switch. As discussed before, the global tag (GTag)
is interpreted along with the unchanged parts of the packet
header’s 5-tuple, to effectively re-use the global tags. The
controller sets the rules, as before:

{5-tuple, NFOutput, GTag, In port, Push, Pop} → outPort

B. Communication between SDNFV Application, SDN Con-
troller and NF orchestrator

Network status to placement engine: The information about
available SDNFV switches, their capacity to run different NFs,
the NFs currently running on switches and the link capacities,
has to be communicated by the SDN controller to the SDNFV
Application, and in particular to the placement engine. This
will also include current performance information, such as load
and traffic statistics to enable the placement engine to make
incremental placement decisions, as described in [11].

Instantiation request to orchestrator: When the placement
engine needs to create a new instance of an NF or the NF
Manager wants to instantiate a new NF, the orchestrator needs
to be involved. The request to the orchestrator includes:

{SwitchID, NFName}
Orchestrating an NF Move: The SDN controller may ini-

tiate the move of an NF from one SDNFV switch to another
for reasons of load balancing or to optimize the routing for a
flow. For this the controller provides to the orchestrator:

{Src-SwitchID, Dest-SwitchID, NFName}
to cause the move of NFName from Src-SwitchID to Dest-
SwitchID. The orchestrator and controller coordinate to per-
form a ’make-before-break’ for re-routing the flow prior to
removing the old NF instance.

Placement request for a flow: When a new flow arrives
and the NF instances have not been created a priori, the SDN
controller needs to make a placement request for the flow
to the SDNFV Application (i.e., placement engine), with the
flow information of the entry switch, the exit switch, and the
assigned service chain. Upon creation of the NF instances by
the NF orchestrator in coordination with the placement engine,
the SDN controller updates the corresponding NF Managers
with the flow table entries.

 1

 10

 100

 1000

 10000

50 500 5000

N
u

m
b

e
r

o
f

N
e

e
d

e
d

 T
a

g
s

Number of Flows

SDNFV-Unique Tags
SDNFV-All Tags

FlowTags

Fig. 4. Number of tags necessary for managing varying numbers of flows

V. EVALUATION

We evaluate the protocol framework for the SDNFV ar-
chitecture proposed here along two dimensions: the number
of tags necessary network-wide and the number of messages
exchanged with the SDN controller. The first is important to
ensure that we use the limited number of available bits in
packet headers wisely, by effectively using the global tags
when it is necessary. The second is to reduce the load on
the SDN controller as much as possible. Both of these seek
to make our architecture scale better.

The topology for our evaluation is from Rocketfuel [13]
(AS-16631) with 22 nodes and 64 links. All the flows go
through a service chain of length five and start at a random
node in the topology and exit at another random node. Each
SDNFV switch is able to support two NFs and the placement
and routing are decided by our placement engine [11]. We use
a Java-based simulator to estimate the number of global tags
needed.

A. Network with only NFs that don’t alter headers

We first look at a network that only has NFs that do not
alter the packet headers. The global tags then are used only
for clearing ambiguities in the routing of the flows. Then we
compare the number of tags needed in our approach with
described method in FlowTags [6]. The result is shown in
Figure 4. Since FlowTags needs a new tag for each flow on
an NF, it needs 25000 tags for managing 5000 flows in this
network when we have a static service chain of length 5.
However in our approach, the number of tags needed depends
on the paths of the flows. A tag is used only if an ambiguity
exists in routing of the flow. As a first step, this itself reduces
the number of tags needed. Furthermore, the number of unique
tags needed can be reduced significantly by re-using the tag
for different flows. For example if 10 flows need 2 tags each,
the total number of necessary tags is 20, however we can use
the same tags for all these 10 flows. Hence, the number of
necessary unique tags is 2. The decision to route a flow then
is based on the combination of the packet header’s 5-tuple and
the global tag. The consequence is that the number of unique
tags is much smaller for SDNFV-Unique Tags, as shown in
the Figure 4.

B. Network with NFs altering headers

For this case, the third NF in the service chain alters the
packet header. We did two experiments. In the first one, the

SDNFV FlowTags
No. of Flows All tags Unique Tags

Dst. Dst.+Ports Dst. Dst.+Ports
50 7 2 1 1 250
500 285 8 1 1 2500

5000 4681 65 3 2 25000
TABLE I

NUMBER OF TAGS IN NETWORK WITH NFS ALTERING HEADERS

 100

 1000

 10000

 100000

50 500 5000

M
e

s
s
a

g
e

s
 S

e
n

t
to

 C
o

n
tr

o
lle

r

Number of Flows

SDNFV
FlowTags

Fig. 5. Number of messages sent to controller for SDNFV and FlowTags

NF does not change the destination address. This is therefore
leveraged to further reduce the number of tags necessary. In
the second case, the destination and the destination port are
unaltered. In our experiment, the port number was uniformly
distributed across 56K port numbers. The dramatic reduction
in the number of tags needed, to just 2 or 3, is shown in
Table I. Finally, an important criterion for scalability is the
number of messages sent to SDN controller. Our approach
and FlowTags are compared in Figure 5. In SDNFV, each
flow needs to contact the SDN controller once. However, with
FlowTags each switch contacts the SDN controller to first get
the necessary rules for that FlowTag. Further, each middlebox
contacts the SDN controller twice, first to generate the tag and
secondly to consume the tags for a flow. SDNFV’s hierarchical
control dramatically reduces the overhead on the controller.

VI. RELATED WORK

Recently there has been work to increase packet perfor-
mance on COTS servers [9][14]. NetVM[9] uses zero-copy
transfer packets from/to VM and between VMs at wire-speed.
ClickOS [14] maps packets buffers to the VM’s address space
to reduce overhead for achieving high performance packet
forwarding.

While there has been a large body of work on the core SDN
protocols, we focus here on the work that examines SDN-
control of middleboxes and network functions, especially for
the dynamic use of middlebox functionality in the network.

SIMPLE[5] is an SDN-based policy enforcement framework
for steering the traffic of middleboxes. The primary goal is to
support complex routing to have flows traverse middleboxes.
SIMPLE uses tags in a packet assigned to recognize a routing
loop. However, SIMPLE does not address the need to support
dynamic service chains and the necessary routing through
them, especially when the service functions for a flow (or a
class of flows) has to be updated based on the processing at a
network (middlebox) function. The use of flow tags minimizes
the size of the flow tables, which is a desirable characteristic
we exploit in this work as well. However, our view is that tags

can serve a much wider purpose of NFs communicating to the
controller or to downstream NFs the result of their processing
so as to exploit the flexibility that is provided in our framework
to support dynamic service chains.

Steering [15] is an SDN-based framework for dynamic
routing of traffic through middleboxes. While it supports
changing the service chains based on the output of the
middleboxes, such an action is always mediated through the
SDN controller which updates different tables in different
switches. The framework is much simpler in that complex
routing (e.g., loops) is not supported. Further, there is no
support to dynamically place multiple replicas of an NF in
a large network.

FlowTags [6] is an architecture for dynamically managing
flows through middleboxes in the network. It also uses tags
for complex, stateful routing of flows. A new tag is utilized
for each branch of a service chain. Tags are not re-used
across flows, hence they should be unique unless the flows
are temporally or geographically separated. Packets of flows
marked with tags are routed only based on the tags. A
middlebox contacts the SDN controller to create the tag and
for interpreting and consuming the tag. When the service
chains are long and middleboxes have a large number of
possible outputs, the number of tags required can be very large.
In contrast, the autonomy we provide with our hierarchical
control at the NF and NF manager levels avoids overloading
the SDN controller and is thus more efficient. Moreover, by
combining the tag and the full n-tuple in the flow table along
with the input port and SwitchID for routing, our approach
requires far fewer tags.

Slick [16] is a network programming architecture that pro-
vides the opportunity for the SDN controller and middleboxes
to communicate with each other. The main feature of interest
to us here is that it provide triggers for network functions to
contact the SDN controller. However, the framework continues
to retain the ’master-slave’ relationship between the network
data plane and the SDN controller, unlike our approach of
providing a hierarchy of control across the components.

Besides the aforementioned works which are done in SDN
field, some other works such as Network Service Header
(NSH) [17] of IETF are done in other fields too. However
because of lacking a centralized controller, making a global
optimal decision on different aspects such as assigning flows
to different instances of NFs is not possible. Moreover, the
dynamicity introduced in this work is limited in comparison
to our selected approach. In our approach, the flows path is
completely based on the dynamic output of the NFs and even
an output of an NF may change the path of next packets
in upstream. In NSH classifiers are separated from network
functions and they cannot affect the next packets in upstream.
The last difference that we want to point out is that NSH
adds a variable size header to the packet, whereas in our
approach because of a limited number of bits needed for
defined fields, we are able to reuse the existing unused fields
in other protocols.

VII. SUMMARY

Our SDNFV architecture seeks to achieve our vision of
a dynamic and flexible network with a smarter data plane.
The protocols we develop also enable NFs to update a flow’s
forwarding rules dynamically, subject to constraints specified
by the service graph, without burdening the centralized SDN
controller. This allows SDNFV to base flow management
decisions on characteristics that cannot be determined at flow
startup. It allows changing traffic characteristics across multi-
ple flows to affect routing behavior, for example by detecting
DDoS attacks or other anomalous flows, or network policy
and load-dependent modifications. Our architecture supports a
rich set of NF types that dynamically modify the path of flows
both upstream and downstream and ones that change packet
headers, such as NATs. SDNFV enables dynamic instantiation
of NFs by an orchestrator. The SDNFV architecture uses tags
for NFs to communicate their output and the state of the flow
by leveraging the idea of “FlowTags” but use it in conjunction
with the knowledge of the network at the SDN controller, to
dramatically reduce the number of tags used network-wide.
We substantially reduce the overhead on the SDN controller
by taking advantage of the hierarchical control possible with
the smarter data plane. The smarter data plane includes the
NFs, the NF Manager and ultimately, the SDN controller, in
decision making.

ACKNOWLEDGMENT

This work was supported in part by NSF grants CNS-
1422362 and CNS-1522546.

REFERENCES

[1] Timothy Wood et al. Towards a software-based network: Integrating
software defined networking and network function virtualization. IEEE
Network, May-June 2015.

[2] N. Feamster et al. The road to SDN. Queue, 11(12), December 2013.
[3] G. J. Aaron et.al. Opennf: Enabling innovation in network function

control. SIGCOMM. ACM, 2014.
[4] European Telecommunications Standards Institute. Network functions

virtualization (nfv): Architectural framework. White Paper, 2014.
[5] Z. A. Qazi et al. Simple-fying middlebox policy enforcement using sdn.

In SIGCOMM Computer Communication Review, volume 43, 2013.
[6] S. K. Fayazbakhsh et al. Enforcing network-wide policies in the presence

of dynamic middlebox actions using flowtags. NSDI ’14.
[7] L. Rizzo. netmap: A novel framework for fast packet I/O. In USENIX

Annual Technical Conference, 2012.
[8] Intel. Intel DPDK: Getting Started Guide. 2013.
[9] J. Hwang et al. Netvm: High performance and flexible networking using

virtualization on commodity platforms. NSDI, 2014.
[10] L. Rizzo et al. Speeding up packet i/o in virtual machines. In ANCS

2013.
[11] A. Mohammadkhan et al. Virtual function placement and traffic steering

in flexible and dynamic software defined networks. In LANMAN 2015.
[12] S. Palkar et al. E2: a framework for nfv applications. In ACM SOSP,

2015.
[13] N. Spring et al. Quantifying the causes of path inflation. In SIGCOMM,

2003.
[14] J. Martins et.al. Clickos and the art of network function virtualization.

NSDI, pages 459–473, Seattle, WA, April 2014. USENIX Association.
[15] Y. Zhang et al. Steering: A software-defined networking for inline

service chaining. In ICNP, 2013.
[16] B. Anwer et al. A slick control plane for network middleboxes. In

SIGCOMM, HotSDN, 2013.
[17] P. Quinn et al. Network Service Header. https://tools.ietf.org/pdf/draft-

quinn-sfc-nsh-07.pdf, 2015. [Online; accessed 12-October-2015].

