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Abstract—The integration of network function virtualization
(NFV) and software defined networks (SDN) seeks to create a
more flexible and dynamic software-based network environment.
The line between entities involved in forwarding and those
involved in more complex middle box functionality in the network
is blurred by the use of high-performance virtualized platforms
capable of performing these functions. A key problem is how
and where network functions should be placed in the network
and how traffic is routed through them. An efficient placement
and appropriate routing increases system capacity while also
minimizing the delay seen by flows.

In this paper, we formulate the problem of network function
placement and routing as a mixed integer linear programming
problem. This formulation not only determines the placement of
services and routing of the flows, but also seeks to minimize the
resource utilization. We develop heuristicsto solve the problem
incrementally, allowing us to support a large number of flows
and to solve the problem for incoming flows without impacting
existing flows.

Index Terms—Integer linear programming, middlebox place-
ment, network function virtualization, software defined networks.

I. INTRODUCTION

Software defined networking (SDN) introduces the concept
of separation between the data plane and control plane, to
provide more flexibility in how individual flows are handled
[1], [2]. At the same time, improved techniques for packet
processing in virtualized platforms running on commercial off
the shelf (COTS) systems make it possible to run network
functions on software based platforms rather than purpose-
built hardware appliances [3], [4], [5]. This approach called
network function virtualization (NFV) further enables the
network to be dynamic and flexible, by exploiting software
environments for common network resident functions. Thus,
SDN and NFV provide flexibility and dynamic capability
in the control and data planes. Key to this is the dynamic
instantiation and placement of network functions (NF) in the
network and flexible routing.

A service provider network rarely consists of just forward-
ing entities like switches and routers [6]. Current networks
commonly include middlebox functions such as firewalls,
proxies, caches, policy engines, etc. Switches and middlebox
functionality can also coexist on the same COTS platform
with the use of NFV. Flows have to be routed through these
network functions in a pre-defined order, and SDN provides

the necessary power and flexibility to achieve this. A network
function (NF) can be dynamically instantiated in a host as
long as there is enough computational power for hosting the
service. Flows steered through switches and NFs, with the goal
of executing the needed service functions in the required order.
This could potentially result in the flow having to traverse a
given link multiple times (i.e. even having loops as perceived
by the network layer, [7]). Thus, the placement of the NFs
and steering flows through them need to be done judiciously.
The focus of this paper is on placing the NFs and routing
of flows, ensuring that each flow’s path starts from an entry
switch, meets all the necessary NFs in sequence, and ends at
the exit switch.

Multiple studies on middlebox or virtual machine (VM)
placement consider the placement problem independent from
how flows utiize these functions and the routing of flows.
Some, such as [8], [9] consider both placement and steering
of flows, but solve them separately. For instance, a heuristic
is used for placement and use its result as an input for flow
steering. However, a placement solution that does not leverage
the information about the flows can be inefficient.

In this paper we have formulated the service placement and
flow steering problems jointly in a single mixed integer linear
problem (MILP) formulation. This formulation results in the
optimal placement of services and the routing of the flows. It
seeks to minimize the maximum link and CPU core utilization
and the maximum delay of flows in the network. This approach
also offers the opportunity to solve problems incrementally,
as flows are added. This means that instead of solving a large
problem which may be intractable, the problem is partitioned
and solved in smaller pieces, and the final result is still close
to the optimal solution. Another benefit of the incremental
solution is that after adding new flows to the network, we
only have to solve the partial problem of newly added flows
without impacting existing flows.

II. SYSTEM DESCRIPTION

Network nodes in our software-based network play multiple
roles – providing the conventional role of forwarding packets,
and supporting network services such as firewalls, proxies,
policy engines etc.. A COTS system CPU comprising multiple
cores could be assigned to forwarding or to provide network
functions. To avoid the overheads of Non-uniform memory978-1-4673-6762-2/15/$31.00 c©2015 IEEE



access (NUMA), we assume that a core is dedicated to a single
VM that supports a network service or forwarding function.

The desired functions are instantiated in the network based
on the requirements of each flow and the placement decisions
are made based on the estimated per-packet computation
requirement for the function and the link bandwidth as well
as the maximum tolerable delay for the flow. In addition, the
set (or chain) of network services and their order is the same
for all packets of the flow.

Two examples of the services chains are depicted in Fig-
ure 1. Each service has its computational requirements, so
we set a limit on maximum number of flows a service can
support on a specified hardware. Making placement decision
for services need to take all of these factors into consideration.
For example, in Figrue 2 we have a network with 8 switches
(we will henceforth use the term switches and network nodes
interchangeably). All the switches except S4 have just one
free core, while switch S4 has two available cores. The
assigned services at each switch is shown in parentheses. The
service chain for F1 is ”ABDEFIC” and the service chain
for F2 is ”DEFGHI” (each letter represent a service like
a firewall or a proxy.) The difficulty for efficient placement
increases dramatically with the growth in the number of flows
or network nodes.

III. MILP FORMULATION

A goal of the formulation is to obtain an ’efficient’ place-
ment of services and routing of the flows without violating the
constraints of the maximum capacity of the links and tolerable
delays of flows. The ’efficient’ placement seeks to minimize
the utilization of the links and of the available CPU cores,
thus maximizing system capacity. This is especially important
when we need to solve the problem incrementally as new flows
and functionality may be dynamically added to the network.
Our proposed problem formulation is as follows:

Minimize U subject to:
∀k ∈ Flows, ∀i,m ∈ Switches, ∀j ∈ Services, ∀l ∈ Ok,
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Fig. 2. An example of service placement for two flows

The definition of variables in this formulation is provided
in Table I. After obtaining the solution, the placement result
is stored in variable M and the routing steps in V . In this
formulation we are minimizing the maximum utilization of
the links and CPU cores of the network nodes (i.e., of the
bottleneck). Core utilization is the number of flows using a
CPU core over the maximum number of flows that can be
simultaneously supported by a service on that CPU core. By
minimization of the utilization, load is distributed more evenly
in the network, avoiding hot spots and increasing residual
system capacity. It also results in lower overall delay for flows.

Equation (1) is a constraint on the maximum number of
services that can be supported on a switch. To avoid NUMA
overhead, at most one service is assigned to a core. Conse-
quently the number of services on a switch should be less
than or equal to the number of free cores on that switch. The
next equation, Equation (2) reflects the process of selecting
the necessary switches for a flow. M represents the available

Var. Definition
U Maximum utilization of links and switches
Mij Number of running instances of service j on switch i
Ci Number of available cores on switch i
Nkil Selected switch for order l of the flow k’s service chain
Skij This value is one, if i is the jth service in flow k’s service

chain; zero otherwise
Wk Binary decision variable for satisfying constraint (4)
Iki Equal to 1, if i is the entrance switch for flow k
Eki Equal to 1, if i is the exit switch for flow k
Dij Delay of the link between switches i and j
TK Maximum delay tolerated by flow k
Pij Maximum number of supported flows, if switch i runs

service j
BK Bandwidth usage of flow k
Hij Capacity of the link between switch i and j
Ok A range from 1 to length of service chain for flow k
O′

k A range from 1 to length of service chain for flow k plus
one

Vklim
Is one, if the link between switches i and m is used, to
reach to the lth service in service chain of flow k

Akji Is one, if switch i processes service j for flow k
TABLE I

DEFINITION OF VARIABLES OF MILP FORMULATION



services on switches, and S stores the necessary services
and their order of execution. Thus, X represents the possible
switches for each order of execution of a particular flow (k).
For each order, only one switch is needed for a service, but
multiple choices may exist in X . Equation (3) selects one
instance using the binary variable W . A limit on the number
of selected switches is set in (4). Although for readability and
clarity we show Equation (3) as a multiplication, it is not a
non-linear constraint, because it can be re-written as follows:

Nkil
≤ XKil

Nkil
≤Wkil

Nkil
≥ XKil

+Wkil
− 1

The legitimacy of this conversion is because both sides of
the multiplication are binary variables. For the flow k, the
selected switches for each order are stored in N . Entry and
exit switches are added to the selected switches N , resulting
in F as shown in Equation (5). For each order in flow k, the
right hand side of Equation (6) is equal to zero except for the
source (+1) and destination (-1) switches. The left hand side
of this equation shows the difference between out-degree and
in-degree of each switch, so each zero or one for V shows the
selection of a link between two switches for a particular order
and flow. To make sure that selected routes in Equation (6)
are not very long and they do not exceed maximum tolerable
delay for a flow, Equation (7) is used.

The maximum number of flows using a service on a switch
simultaneously depends on the nature of a service such as
the computation needed for that service, and the hardware
capabilities of the switch running it. P reflects this for each
combination of service and switch. This may be specified
a priori or obtained experimentally. Equation (8) stores the
mapping between switches and services for the flow k in
variable A. A is limited to the maximum number of flows
defined for a service in Equation (9). Equation (10) and
Equation (11) set the variable U to the maximum value of
link or core utilization and finally Link utilization is enforced
by Equation (10).

A. Variations in Formulation

The formulation above can be the foundation, and we
consider a few alternatives below.

1) Consider only Link or Core utilization: Equation (11) or
Equation (10) may be omitted so that we seek to just optimize
either the core or link utilization. This variation is helpful
if one of the objectives, link or core utilization, has a high
value and cannot be decreased at all. Hence it is better to just
minimize the other one and increase the available capacity in
the network.

2) Combined formulation with a penalty function for delay:
The combined formulation, which covers link and core utiliza-
tions at the same time does not seek to minimize the delays
experienced by flows, but just ensures the delay is below the
tolerable value. After minimizing the utilization of the links

and cores, it may be desirable to minimize the delay as well.
For this, we can change the objective function to the following:

Minimize: U +MaxDelay/LV
LV is a large enough integer to reduce the effect of MaxDelay
to an amount lower than the minimum variance of U. For
example if the finest granularity of variance in U is equal to
0.01, LV may be two orders larger than the possible MaxDelay.
Therefore the effect of the delay will be limited to one percent.
With an equal value of U, the solution with smaller MaxDelay
is chosen. MaxDelay, the maximum delay observed by a flow,
is: ∑

l′

∑
i,m

Vkl′
im

Dim ≤MaxDelay (12)

This constraint reflects the fact that MaxDelay is larger or
equal to the total delay of any flow.

IV. DEVELOPING SIMPLE HEURISTICS

The solution time for the optimal placement with the MILP
grows exponentially with the number of flows, thus limiting
the scale of the problem that can be solved. Moreover, once the
optimal placement is arrived at, any changes in the set of flows
or the assigned services at the switches requires the problem
to be solved all over again, which may not be practical . We
seek heuristic approaches to solve these problems.

3) Heuristic-A: This heuristic is a multi-step greedy algo-
rithm without using the MILP. At first we select flows one
by one and try to place their required services on free cores
along their shortest path. In the next step, we seek to share the
already assigned cores on the shortest path. In step three, we
then look further at the neighboring switches and use their
free cores to accommodate necessary services. In the next
step we try to share already assigned cores in the neighboring
switches with flows whose requirements are not yet satisfied.
If after all these previous steps a flow still does not have
all the necessary services, Heuristic-A adds a node from the
neighboring switches to the shortest path and repeats all the
aforementioned steps.

4) Heuristic B, B+, and B+COR: For these heuristics,
instead of solving the problem for all the flows at the same
time, we divide the flows into the groups. We start from the
first group, and solve the optimization problem for it. Based
on the solution, the problem is updated again and we solve
the updated problem for the next group. We continue this
process until all flows are supported. We call this heuristic B.
To be able to use information from a previous step, we have
defined new set of variables and have changed some of the
constraints of the MILP formulation. We call these variables
preM , preUL, and preUC. The first, preM , represents the
union of assignments of services to the cores in the previous
rounds. The M variable in the formulation is replaced with
M +preM throughout. preUL and preUC represent the link
utilization and core utilization respectively. preUL is added
to the left hand side of (11) and preUC is added to the left
hand side of (9).



In the MILP formulation we are not minimizing the number
of used cores, so as a result some cores may be assigned but
not used. To make this heuristic more efficient, we add a pre-
processing phase which eliminates unused cores from preM .
In the rest of the paper, this enhanced version is called B+. It is
efficient in curing the both drawbacks of original formulation:
if we do the processing in small groups, the problem is solved
very fast; and this method can be used to avoid solving the
problem all over again. Just the problem for the added flows
can be solved.

After studying the results with B+, we found that other
methods of partitioning flows may help get better results. The
most effective was B + COR. In first step, the shortest path
between entry and exit switches for different flows is chosen.
Then, the number of flows who have a common switch in
their shortest path is counted and assigned to that switch.
Then switches are sorted in ascending order based on the
number of flows passing through them. Less crowded switches
are selected first. The reason for efficiency of this algorithm
is that trying to minimize utilization of bottleneck switches
overuse lots of resources of neighboring switches in the hope
of lowering the overall utilization. But if we place flows at
crowded switches last, the necessary resources at neighboring
switches are allocated and are used to satisfy the needs of
hotspot flows. In other words, starting from the least crowded
switches, helps us to have a more even distribution of resources
in the network.

5) Heuristic C: The default formulation doesn’t support
minimizing the number of used cores, because the original for-
mulation seeks to minimize the utilization at the bottlenecks.
But with Heuristic C, similar to the B, flows are processed in
groups. Therefore having more unassigned cores provides a
greater opportunity for placing subsequent flows. It provides
the flexibility to define the type of a service that has to run
on a core for incoming flows. So Heuristic C is similar to B,
except that the objective function is changed to: Minimize U+
(MaxDelay / LV) + (TotalCores / VLV)

The value of TotalCores is calculated based on the fol-
lowing expression:∑

i,j

Mij ≤ TotalCores

VLV is defined similarly to LV. The LV should be large enough
that the maximum variance of TotalCores over LV should be
smaller than minimum variance of MaxDelay over LV.

V. EVALUATION

We evaluate the effectiveness of our MILP formulation
on an example network topology, and initially use a default
where all the flows have the same service chain comprising
5 services. All services support up to 10 flows on a single
core, with the exception of Service4 which only supports up
to 4 different flows on a switch core. We use an off-the-shelf
solver to solve the MILP and the non-optimization components
are developed in Java. All the switches have homogeneous
processing capability with 2 available CPU cores. The default
topology in experiments is the network topology of AS-16631
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from Rocketfuel [10] with 22 nodes and 64 links. We run a
total of 12 experiments, with varying number of flows: 5 to
60 in steps of 5.

First we investigate different objective functions, C, L
and M , each minimizing CPU load, traffic load on the
links or both CPU and link load, respectively. They can also
minimize the maximum flow delay, after minimizing its main
objective and this is represented by a D suffix. To show
that the optimization approach can support additional flows
as they arrive, we generated random flows in groups of five
each. We then placed these flows using the MILP with the
different objective function. If the placement was feasible,
another group of five was added to the network. The results of
this experiment is depicted in Figure 3. Each objective function
with and without maximum delay minimization are shown
as distinct bars. ’None’ represents a placement without any
optimization, and ’Mix’ shows the results with the objective
function M combining link and core utilization. The sig-
nificant improvement in capacity by minimizing delay in the
’None’ and ’Core’ cases shows that minimizing the maximum
delay can be useful. However, minimizing the maximum link
utilization is effective as seen with the M (Mix) objective
function, which has a higher capacity than both the ’Core’
cases. Enhancements by adding delay minimization to the Mix
case shows even better performance. Figures 4, 7 and Figure 8
show the maximum utilization of the most highly utilized core,
link and the link or core for the solution with the 3 different
objective functions C, L and M . When only one metric
(core or link utilization) is minimized, the utilizations of the
other resource grows quickly, resulting in that resource also
not being used by additional flows and reducing the flexibility
for the placement algorithm. The combined objective function
( M ) is able to compensate for the shortage in one of the
resources by increase in the usage of the other resource. The
core and link utilization thus increase together.

As shown in Figure 8, when delay minimization is also used,
we observe higher utilization compared to the case where there



 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0  10  20  30  40  50  60

N
u
m

b
e
r 

o
f 
It
e
ra

ti
o
n
s

Number of Flows

Optmial_L
Optmial_MD

Fig. 5. Number of solver iterations for different objective functions

Fig. 6. Status of found solution for each problem

is no delay minimization (even though delay minimization is
a second level optimization). This is because we only achieve
a suboptimal MILP solution. In some cases, especially for
large number of flows, the solver is not able to reach to the
optimal solution even after running the solver for a long time.
In these cases, we have reported the best achieved (suboptimal)
solution for that problem. Figure 6 shows which problems
produced solutions within a ”gap” percentage of the optimal
solution. For example if we reached to a solution with an
objective function with 17% higher value than the possible
optimal answer, we mark it as ’solved’ if the gap is 25%. It
is marked as ’unsolved’ for a gap of 0, 5, and 10 percent.
The figure shows that the optimal solutions are reachable for
all the cases up to 10 flows. However, we are not able to
find the optimal solution even for 15 flows in some cases.
This challenge is because of the exponential nature of this
problem. The number of iterations needed for getting the
optimal solution is shown in Figure 5. Optimal MD needs
substantial computation time even for 15 flows. As a result,
we propose heuristics to overcome this scalability challenge.

Figure 9 shows the maximum delay of flows in the network,
which is below 100 (the value set in the constraint for the
maximum delay tolerated). Using the delay in the objective
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function does help in reducing the maximum delay of flows,
and the maximum delay is less that three times the maximum
delay of the shortest path even in the worst case.

A. Evaluation of Heuristics

Our main goal is to support as large a number of flows as
possible in a network. The maximum number of supported
flows by each method is illustrated in Figure 10. We are
able to solve the original optimization problem, which returns
the optimal placement, for up to 60 flows in this network.
However, the time needed for computation of optimal solution
in this network with 22 switches and 60 flows, is more than
a day even on a server.

We therefore look at using the various heuristics described
in the previous section. The most scalable method, B+COR,
can fit 55 flows in the network, while solving the placement in
a matter of seconds. Based on the bandwidth required for flow,
the link capacities in the network and the maximum number
of flows supported on each switch, the maximum number of
flows that can be carried in this network is 60 flows, even
with optimal placement and steering,. With our heuristics, we
could fit up to 55 flows (92% of optimal solution). To show the
scalability of our heuristic approach, we increased the capacity
of network by a factor of 10 and then 100, by changing the
available bandwidth and the flow capacity of each service. The
resulting number of fitted flows in the network by heuristic
B+ is shown in Figure 11.

The comparison between maximum delay of algorithms
and optimal solution is in Figure 12 shows the delay of the
proposed heuristics is comparable to delay value of optimal
solution (even lower in some cases). Since the optimizer first
optimizes the core and link utilization and delay only as a
second step.

VI. RELATED WORK

A large body of work exists for object placement and traffic
steering. In our context, some recent approaches are:
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1) CoMb[11]: CoMb is an architecture supporting consol-
idated middleboxes. Its optimization problem places services
along the pre-defined paths of flows, leveraging the common
parts of different services. One consequence is that it lacks
the dynamic nature of placing NFVs in the network and the
corresponding routing.

2) Stratos [9]: Stratos is an orchestration layer for virtual
middleboxes in clouds. It uses an ILP formulation to decide
how to steer flows through middleboxes, with a binary cost
function between switches. Decisions about placement are
made by an online rack-aware heuristic.

3) SIMPLE [12]: They use both an online and offline for-
mulation. The main focus of the offline formulation is to keep
limiting the size of forwarding rules due to the limits in the
TCAM memory of SDN switches. The online formulation is
for online load balancing on the available switches. However,
it does not address the possibility of dynamic instantiation of
services.

4) StEERING [8]: This work describes a system to dynam-
ically instantiate a service at a desired network node and route
traffic through such a service. The placement of the service is
primarily through a heuristic.

5) T-Storm [13]: T-Storm is an online scheduler for Storm
stream processing. There are some similarities between this
scheduler and the placement and steering needed in an SDN-
NFV network. For example, assigning executors to slots on
workers resembles the service assignment to switches. How-
ever the proposed algorithm in T-Storm does not satisfy our
needs as it primarily allocates executors based on the incoming
traffic load and does not consider the network topology for
decision making.
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VII. CONCLUSIONS

NFVs supported by an SDN protocol suite, provide a great
opportunity to have higher level of flexibility and dynamicity
in networks. However they introduce new challenges of joint
service placement and traffic steering. In this paper, we pro-
vided a MILP formulation for this problem, which not only
determines the placement of services and routing of the flows,
but also seeks to minimize network link and network node
core utilizations. We have devised heuristics to provide the
opportunity to perform the placement incrementally without
imposing a significant penalty. Our ongoing work is to enhance
the scalability of our solution approach and to implement and
demonstrate the use of the placement approach in practice.
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