
OpenNetVM: A Platform for High Performance
Network Service Chains

Wei Zhang

⇤
Guyue Liu

⇤
Wenhui Zhang

⇤
Neel Shah

⇤
Phil Lopreiato

⇤
Gregoire Todeschi

‡

K.K. Ramakrishnan

†
Timothy Wood

⇤
⇤The George Washington University ‡INP ENSEEIHT †University of California Riverside

Abstract
Just as Software Defined Networking (SDN) research and
product development was greatly accelerated with the re-
lease of several open source SDN platforms, we believe that
Network Function Virtualization (NFV) research can see sim-
ilar growth with the development of a flexible and efficient
platform enabling high performance NFV implementations.
Existing NFV research prototypes provide insufficient per-
formance, flexibility, or isolation. Furthermore, high per-
formance I/O platforms such as Intel’s DPDK lack higher
level abstractions. We present OpenNetVM, a highly effi-
cient packet processing framework that greatly simplifies the
development of network functions, as well as their manage-
ment and optimization. OpenNetVM, based on the NetVM
architecture, runs network functions in lightweight Docker
containers that start in less than a second. The OpenNetVM
platform manager provides load balancing, flexible flow man-
agement, and service name abstractions. OpenNetVM uses
DPDK for high performance I/O, and efficiently routes pack-
ets through dynamically created service chains. Our evalu-
ation achieves throughputs of 68 Gbps when load balancing
across two NF replicas, and 40 Gbps when traversing a chain
of five NFs, realizing the potential of deploying software ser-
vices in production networks.

1. INTRODUCTION
Network Function Virtualization (NFV) promises to en-

able a vast array of in-network software functions running
efficiently in virtualized environments. Network and data
center operators alike envisage new functionality that can be
deployed as virtual middleboxes, removing the expense and
inflexibility of past hardware-based approaches. These func-
tions range from lightweight software switches, high per-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
HotMIddlebox, August 22–26, 2016, Florianopolis, Brazil
c� 2016 ACM. ISBN 978-1-4503-4424-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2940147.2940155

formance proxy engines to complex intrusion detection sys-
tems (IDS). Providers and practitioners seek to deploy these
as parts of complex service chains comprising multiple net-
work functions (NFs).

Recently, several high performance I/O libraries such as
netmap, DPDK, and PF_RING have emerged to allow devel-
opers and researchers to build efficient NF prototypes. These
libraries typically enable packet processing rates of 10 Gbps
or higher by avoiding the kernel’s networking stack and al-
lowing direct access to packet data from a user space appli-
cation. While this has been a boon for accelerating individ-
ual applications, these libraries do not assist with the compo-
sition of NFs nor their management. E.g., SoftNIC [2] and
DPDK pipeline [5] only support fixed, pre-defined service
chains, and they can not dynamically steer packets to NFs.
Further, since libraries such as DPDK assume complete con-
trol of NIC ports and dedicate them to a single process, it is
impossible to run several accelerated functions on the same
server unless they have been carefully crafted to coexist with
each other. Thus, while the low-level tools to build network
functions are becoming available, we lack a platform that
provides the higher level abstractions needed to compose
them into service chains, control the flow of packets among
them, and manage their resources.

From these needs we derive three design principles that
guides our architecture:
• An NF management framework must be lightweight and

efficient, while providing flexible packet steering.
• Both the management framework and NFs must have con-

trol over how packets are steered through service chains.
• NFs must be isolated, quick to deploy, and easy to develop

by different vendors.
OpenNetVM encompasses these principles by providing

a flexible and high performance NFV framework to support
a “smart” data plane. Our work is based on the architecture
developed for our NetVM platform [3], but extended to sup-
port flexible management capabilities, lighter weight NFs,
and improved deployment and interoperability.

Container-based NFs: Network functions run as stan-
dard user space processes inside Docker containers, making
them lighter weight than virtual machines, but still allow-
ing a versatile linux development environment. This greatly
simplifies NF deployment by multiple vendors since con-
tainers are self-contained and modular. Containers can be

quickly started on demand and incur minimal overhead.
NF and flow management: OpenNetVM’s management

framework tracks which NFs are running and provides a ser-
vice class abstraction (e.g., firewall, IDS, etc.) to map to
specific instances. A flow table directs packets between NFs
in service chains; this can be configured dynamically by an
SDN controller or by other NFs. By providing control capa-
bilities within both the manager and NFs, OpenNetVM re-
duces the communication with the SDN controller, increas-
ing flexibility and efficiency.

Efficient I/O: Using DPDK eliminates kernel overheads,
allowing zero-copy access to DMA’d packets from a user
space poll-mode driver. We extend this to support zero-copy
I/O in service chains of multiple NFs using shared memory
accessible to each Docker container within a common secu-
rity domain.

Scalability and Optimizations: NFs can be easily repli-
cated for scalability, and the NF Manager will automati-
cally load balance packets across replicas to maximize per-
formance. The framework is carefully optimized with tech-
niques such as cached flow table lookups to avoid bottle-
necks in the management layer.

While some of these techniques have been explored in the
past, our contribution lies in combining them into an efficient
and easy to use platform available for the community’s use.1
In this paper we describe the OpenNetVM architecture, dis-
cuss the optimizations and efficient data structures needed
to guarantee its performance, and evaluate its effectiveness
compared to existing approaches.

2. BACKGROUND & RELATED WORK
NFV provides network services through software appli-

ances, rather than hardware devices [4]. The classical ap-
proach of running network functions such as routers and
firewalls in hardware requires specialized devices for differ-
ent network functions, and each needs to be individually de-
ployed. NFV enables us to run NFs on commodity off the
shelf servers, thus easing deployment of services from dif-
ferent vendors. NFV promises to greatly improve the flex-
ibility with which services can be deployed and modified,
while lowering costs.

Several high performance data plane platforms have re-
cently been proposed and developed to support network ap-
plications. DPDK [5] bypasses overheads inherent in tradi-
tional interrupt based kernel network stack packet process-
ing, and enables applications to directly access data from
NICs. PF_Ring [1] achieves wire speed packet capture by
utilizing ring buffers which allow both userspace and kernel
space access. Netmap [9] preallocates packet buffers, re-
duces system call time by using large batches, and achieves
zero-copy with shared memory buffers between userspace
and kernel space. All of these platforms focus on rapidly
delivering packets from the NIC to a userspace application.

NFV frameworks can be built on top of these I/O plat-
forms. ClickOS [7] uses netmap [9] and the VALE switch
1Source code and NSF CloudLab images at
http://sdnfv.github.io/

[10] to efficiently move packets between lightweight vir-
tual machines running Click software router elements. They
focus on improving network performance of Xen by solv-
ing bottlenecks in the hypervisor’s network I/O pipeline and
using ClickOS, a light weight, fast booting mini-OS cus-
tomized for network packet processing. This allows a dense
and rapid deployment of NFs, which we achieve through our
use of containers. ClickOS also supports interrupt-driven
NFs that can share CPUs; OpenNetVM dedicates cores to
NFs, which can consume more resources but provides higher
performance as shown in our evaluation. In addition, ClickOS
provides a fairly limited development environment for NFs
since they must be designed within the Click framework’s
specifications and do not run within a standard Linux envi-
ronment. The framework is also designed for static service
chains of functions, and does not offer NFs flexible control
over how packets are routed between VMs.

E2 [8], like OpenNetVM, is built using DPDK. E2 is a
framework for end to end orchestration of middleboxes, in-
cluding placement, resource and meta data management, and
service chains. However, E2 has fixed service chains—impeding
dynamic instantiation of new services, flexible packet rout-
ing, and deployment of NFs from competing vendors.

While these projects have illustrated the potential to pro-
cess packets at line rates on commodity servers, they lack
the flexibility and isolation needed in a full NFV platform.
OpenNetVM seeks to fill this gap by adding higher level ab-
stractions such as service chains, dynamic NF instantiation,
flexible flow control, load balancing, and naming, while still
retaining the high efficiency of the underlying DPDK plat-
form.

Container technologies such as Docker and LXC have re-
cently gained popularity as an alternative to server virtual-
ization platforms. Containers use namespace and resource
isolation provided by the kernel to encapsulate a process or
set of processes within a lightweight capsule. Since contain-
ers run as processes within the same host operating system,
sharing memory between them (critical for OpenNetVM’s
zero-copy I/O) is greatly simplified since existing memory
mapping mechanisms can be used. Containers also con-
sume fewer resources than virtual machines since they do
not include their own operating system, instead relying on
the host’s kernel. While this prevents containers from run-
ning entirely different operating systems (e.g., a Windows
container on a Linux host), it is still possible for the con-
tainer to encapsulate completely different libraries and pro-
cesses than the host (e.g., a container running the RedHat
distribution with a customized version of libc can run on an
Ubuntu host).

Unlike virtual machines where a VM is defined by a disk
image potentially gigabytes in size, containers are defined
by a configuration list of packages and files to be installed
within. This greatly simplifies the deployment and shar-
ing of containers since their configuration files can be easily
copied, modified, and versioned. OpenNetVM uses Docker
containers, meaning that NFs can be trivially shared on the
Docker Hub image repository. Using containers to run net-
work functions provides a multitude of benefits: NFs by dif-

Container 1

Shared Memory
(packets, flow tables, service chains, ring buffers)

Packet

NF Manager (DPDK)

R TNFlib

NF

RX

Container 2

R T

NF
NFlib 3rd party

library

Container 3

R T

NF
NFlib

Container 4

R T

NF
NFlib custom

distro

NIC 1 NIC 2

TX1 TX2

FT Packet

MgrR T

Figure 1: The NF Manager creates a shared memory region to store packets and meta data such as the flow table and
service chain lists. Packets are moved between NFs by RX and TX threads that copy packet descriptors into an NF’s
receive (R) and transmit (T) ring buffers. NFs run in isolated containers that encapsulate all dependencies.

ferent vendors can easily co-exist while retaining isolation,
each container can include its own libraries and dependen-
cies, and resources can be precisely allocated.

3. OpenNetVM ARCHITECTURE
As shown in Figure 1, OpenNetVM is split between the

NF Manager, which interfaces with the NIC, maintains flow
tables, and facilitates communication between NFs; NFLib,
which provides the API within an NF to interact with the
manager; and user-written NFs that make use of that API.
The NF Manager typically runs on the host system, although
it can be run inside a container if desired. The NFs, compiled
together with NFlib and any desired 3rd party libraries, run
as Docker containers.

3.1 NF Manager
The NF Manager maintains network state by managing

NFs and routing packets. The manager is composed of three
types of components: a Manager thread that configures shared
memory and tracks active NFs, RX threads that read packets
from the NIC, and TX threads that move packets between
different NFs.
Memory Management: When OpenNetVM first starts, the
Manager thread uses the DPDK library to allocate memory
pools in huge pages to store incoming packets. These pools
are divided across all available CPU sockets so that pack-
ets will only be processed by cores in the socket local to the
memory DIMMs holding them. When NFs start, they find
the shared memory address in a configuration file and then
map the memory regions using the same base virtual address
as the manager. This ensures that a packet descriptor con-
taining a virtual address of where the data is stored can be
correctly interpreted by both the manager and the NFs with-
out any translation. This vastly simplifies memory sharing
compared to our prior approach in NetVM [3], where ad-
dresses needed to be carefully translated to allow access by
KVM-based NFs over an emulated PCI device.
NF Management: After performing its initialization rou-
tines, the Manager thread begins checking for new NFs by
polling a message queue in the shared memory region. New

NFs use this message channel to notify the manager so they
can be added to a registry of active NFs; similarly, when
NFs shutdown they inform the Manager so it can clean up
any relevant data structures. Message queues (implemented
as ring buffers) are used throughout the OpenNetVM archi-
tecture because they allow efficient, asynchronous commu-
nication. In addition to the Manager’s message ring, there
are also two descriptor ring buffers (Receive and Transmit)
created in shared memory for each NF.
Packet Flow: The manager’s RX and TX threads handle the
routing of packets between NFs and the NIC ports. Packets
initially arrive in a queue on a NIC port based on the Re-
ceive Side Scaling (RSS) hash of the packet. The DPDK
Poll Mode Driver ensures that packet data is DMA’d directly
into the shared memory pool and that a packet descriptor
(i.e., address and meta data) is copied into a queue associ-
ated with an RX thread pinned to a core on the same socket
as the memory pool. The RX thread will remove a batch of
packets from its queue and then examine them individually
to decide how they should be routed to the Receive ring of
the destination NF. TX threads perform a similar function,
but instead of reading from a NIC queue they read from the
Transmit ring buffers of NFs and either send the packets out
a NIC port or to a different NF Receive ring. Packets may
be directed using a flow table or a default service chain, as
described in subsequent sections.

OpenNetVM uses TX threads to provide an abstraction
layer between NFs. In other systems such as Click [6] and
E2 [8], it is possible to compile a service chain of NFs to-
gether, procedures, into a single process; moving between
the service chain in their case is thus simply a new proce-
dure call. While that approach can be more efficient, it lim-
its flexibility since the service chain order is typically hard
coded and cannot be adjusted dynamically by a management
entity, nor can an NF be dynamically moved because of re-
source availability constraints or workload demands. In con-
trast, OpenNetVM’s TX threads can determine how to route
a packet based on an action requested by the last NF or by a
flow table lookup. The TX thread also provides load balanc-
ing functionality across NF replicas, without requiring NFs
to be aware of what other containers are currently running.

3.2 Network Functions
OpenNetVM Network Functions interact with the man-

ager using our NFLib API. When the NF process starts (ei-
ther natively or in a container), it calls an initialization func-
tion that registers its service type with the manager. The
NFlib run function then polls its Receive ring for packets
arriving from the NIC or other NFs. For each packet re-
ceived, NFlib will execute a callback function provided by
the NF developer to process the packet. NFlib handles all
interactions with the shared memory rings, as well as batch-
ing packets for transfer. Our current release only supports
“polling” NFs that have a dedicated CPU core, although we
are investigating support for interrupt driven NFs that can
share a core.

When an NF runs its callback to handle an incoming packet
it is given a packet descriptor that contains the address of
the packet body and some meta data. The NF will perform
the desired functionality, such as routing, Deep Packet In-
spection (DPI), intrusion prevention, etc. Then the NF can
indicate what action should be performed on the packet sub-
sequently: Lookup in Flow Table, Send to another NF, Send
to NIC, or Drop. By default, the NF will issue the Lookup
Flow Table action, causing the next step to be determined
based on flow table rules as described in Section 4. On the
other hand, if a flow table is not being used, or some excep-
tion has occurred, the NF can specify an NF service type to
send to, a NIC port to send out of, or can simply request that
the packet be dropped. In all cases, the packet descriptor
(containing the requested action) will be placed in the NF’s
Transmit queue, to be handled by one of the manager’s TX
threads. The TX thread then has the ability to perform or
overrule the action.

4. FLOW MANAGEMENT
OpenNetVM facilitates movement of packets through ser-

vice chains of NFs in several ways. First, it provides a ser-
vice type abstraction so that new NFs announce what type of
function they provide, allowing the manager to direct pack-
ets to the desired function type and load balance across repli-
cas of a type. OpenNetVM defines a service chain as a list
of actions, typically a series of send actions to different ser-
vice types. Finally, the Flow Director provides a convenient
and flexible way to match individual packet flows to the ser-
vice chains responsible for them. These rules can either be
provided by NFs, or via an SDN controller.

4.1 Service Types
When an NF starts, it declares its “Service ID" to the man-

ager. A Service ID is a numeric identifier that represents one
NF type. There can be many NFs with the same Service
ID running at once, but each will be assigned a unique in-
stance ID. NFs are always addressed by their Service ID.
Service-based addressing means that one NF doesn’t require
knowledge of what other instance IDs are in use (as this may
change over time). Instead, an NF simply sends its packets
to the desired Service, and the Manager determines which
instance to use. Also, if an NF exits unexpectedly, then

the packet flow will continue unbroken, since the manager
routes packets to other NFs of the same type and Service ID.

Addressing packets to NFs based on the Service ID in-
stead of instances also allows the manager to easily load-
balance packets. When the manager performs the Service
ID lookup, it determines a list of the relevant instance IDs.
The Manager then takes the packet’s symmetric RSS hash
(derived from a tuple consisting of the packet’s IP protocol
and source/destination address and port) modulo the num-
ber of available NFs of the desired type to select which in-
stance to route the packet to. This approach ensures that, as
long as NFs aren’t starting and stopping, packets in the same
(bidirectional) flow always get routed to the same instances
of each service type they pass through, since the RSS hash
does not change.

4.2 Service Chains
While OpenNetVM seeks to give significant control to

NFs about how packets flow through the data plane, network
administrators will typically provide a set of default rules
defined for each service chain. A Service Chain is a list of
actions along a path a flow has to follow. For example, a
system may want all packets to travel to Service ID 3, then
5, and then be sent out port 3 on the NIC. An NF can set
up this default service chain, and then NFs in Service 3 and
5 simply have to use the Flow Table action for the packet to
continue through the service chain. If desired (and permitted
by the manager’s configuration), NFs can still send packets
to specific alternate services if they prefer that packets not
follow the default route.

4.3 Flow Director and Flow Tables
OpenNetVM’s Flow Director component in the NF Man-

ager contains a flow table that maps packet flows to service
chains. Doing this in the management layer gives greater
flexibility in how packets are steered compared to hardware
techniques like Intel’s Flow Director which does not sup-
port service chains. When a TX thread must move a packet
through a service chain, it first needs to look up which chain
to use (or the default Service Chain, if none exist for the
given flow). The Flow Director also exposes an API to NFs
so that they can dynamically assign what service chains are
mapped to each flow.

OpenNetVM includes an SDN NF which will contact an
SDN controller via the OpenFlow protocol to determine the
desired service chain for each flow. The SDN NF then uses
the Flow Director API to configure the manager’s flow table.
This approach keeps the manager as simple as possible; it
merely enforces the flow table rules, while allowing other
applications to provide the policy to set them.

Flow table lookups can be expensive when performed in
the critical path of the data plane–our results in Section 5.2
show that a naïve implementation that hashes the packet header
on each lookup lowers throughput by over 50%. Since flow
table-like data structures—i.e., hash tables that map from
a flow to data about that flow—are common to many NFs,
OpenNetVM provides a flow table library optimized for packet
lookups based on DPDK’s Cuckoo Hash implementation.

The NF Manager’s Flow Director uses the library to create
a table mapping flows to service chains, but other NFs such
as an IDS might use a table to store state about each flow.
Rather than recalculate the packet hash for each lookup, Open-
NetVM repurposes the RSS hash calculated in hardware by
the NIC to simplify packet lookups for flow tables both within
the NF Manager and within NFs. This optimization can pro-
vide a significant performance improvement, especially for
service chains that contain multiple NFs that use hash tables
to store state about flows.

5. EVALUATION
In this section, we evaluate OpenNetVM in terms of ser-

vice chain performance, flow table overhead, and multi-port
scalability.

Our experiment setup is comprised of two classes of servers.
For traffic generation (via Pktgen-DPDK) and experiments
requiring a single NIC port, we use HP servers with an In-
tel Xeon CPU X5650 @ 2.67GHz (6 cores), 64GB mem-
ory, and an Intel 82599ES 10G NIC. We also use a Dell
machine with an Intel Xeon CPU E5-2697 v3 @ 2.60GHz
(14 cores), 164GB memory, and four Dual Port NICs2. HP
servers run Ubuntu 14.04.3 (kernel 3.19.0) and the Dell runs
Ubuntu 12.04.5 (kernel 3.2.0) with Docker v1.9.1.

5.1 Service Chain Performance
We first evaluate the service chain performance of Open-

NetVM running as processes and Docker containers, com-
pared to ClickOS which uses Xen virtual machines. To avoid
overhead differences caused by NIC processing, we have
the first NF in the chain create a set of packets which are
then repeatedly sent through the chain on a single host, each
NF simply forwards the packet to the next. Figure 2 shows
how throughput for 64 byte packets changes as we adjust the
chain length. With ClickOS, we were unable to start more
than three NFs, but see a trend comparable to the ClickOS
paper. OpenNetVM’s manager runs one TX thread per NF,
and each is dedicated a core; we allocate the same number
of cores when using ClickOS.

The performance difference for OpenNetVM when us-
ing processes or containers is negligible; for simplicity our
remaining experiments use processes instead of containers.
OpenNetVM achieves higher performance than ClickOS since
it is based on DPDK’s poll-mode driver (as opposed to inter-
rupts) and has cheaper packet transfer costs between NFs
since it avoids kernel overheads. Even with a six NF chain,
OpenNetVM sees only a 4% drop in throughput, while ClickOS
falls by 39% with a chain of three NFs.

5.2 Flow Director Overheads
We next consider a more flexible case where real pack-

ets are routed via the flow table instead of hard coded rules
within the NF. Figure 3 measures the throughput of Open-
2The Dell machine has three Intel 10G Dual Port X520 NICs
and the fourth is an Intel 82599EB 10G Dual Port NIC. None
of our cards can meet a full 20 Gbps for 64 byte packets,
which we believe to be a hardware limitation.

 0

 5

 10

 15

 20

1 2 3 6

Th
ro

ug
hp

ut
 (M

pp
s)

Chain Length

ONVM-Process
ONVM-Docker

Clickos

Figure 2: OpenNetVM achieves high throughput, even
when running through long service chains, by avoiding
expensive packet copies and system calls.

��

�����

�����

�����

�����

������

���������� ������� ��������

��
��
��
��
��
���

��
���
�

�� ��� ���

Figure 3: Flow table lookups add overhead to RX and
TX threads, but our optimizations eliminate this effect
except for 64 byte packets.

NetVM when traffic arrives from a packet generator over a
10Gbps link and is directed to a single NF; the manager uses
1 RX thread and 1 TX thread. In the Default Chain case,
the RX thread receives the packets and sends them to the NF
using a globally defined default chain without any flow table
lookups; this achieves close to the 10Gbps rate even when
sending 64 byte packets. If the RX thread must perform a
flow table lookup using our optimized Flow Director, the
throughput drops since the RX thread becomes a bottleneck;
this can be mitigated by using multiple RX threads, and the
10Gbps rate can easily be met for reasonably sized packets.
However, if a naïve flow table implementation is used that
must hash the header of each packet, the throughput drops
even further, and is unable to meet the line rate even for 256
byte packets.

To precisely measure the latency and avoid other compo-
nent interference (e.g., read / write to NIC, networking con-
gestion), we test the latency of each Flow Director method
using locally generated packets. We have an NF create a set
of packets and send them to the TX thread, which sends the
packets back to the NF either using a default service chain
or a flow table lookup. The latency with the default service
chain (4.4 us) and our Optimized Flow Table lookups (6.9
us) are similar. However, Naïve Flow Table lookups take
24.9 us, increasing latency 5.68 times compared to the de-
fault service chain.

5.3 Multi-port Scalability
To evaluate OpenNetVM’s scale in a more realistic en-

vironment, we use eight ports on our Dell server and send
packets to it from directly connected HP servers. The traf-
fic generators replay a PCAP trace of HTTP packets: 44.3%

��
���
���
���
���
���
���
���

����������� ����������� ����������

��
��
��
��
��
���

��
��

Figure 4: OpenNetVM achieves nearly 70 Gbps on real
traffic using only six cores.

are 64 bytes, 18.5% are 65-1023 bytes, and 37.2% are 1024-
1518 bytes. The packets are sent to a default NF, which im-
mediately forwards the packets back out the NIC port.

When configured with one RX thread, one TX thread, and
one NF, OpenNetVM achieves 48 Gbps. If we start a sec-
ond NF and add another RX and TX thread to the manager,
OpenNetVM automatically load balances flows across the
NFs to achieve 68 Gbps. This illustrates the potential of
using OpenNetVM as a platform for software routers even
deep in a data center network.

Finally, we reconfigure the system to create a linear, de-
fault service chain of five NFs, with 2 RX and 5 TX threads.
This setup gets a throughput of 40 Gbps. Note that the chain
of five NFs increases the load on the manager by 5X—the
TX threads are steering packets at a total rate of 34 mil-
lion packets per second. This configuration consumes all
of the cores on our server, but we expect that with additional
cores the entire service chain could be replicated to further
increase the throughput.

5.4 Flexible Packet Steering
Finally, we demonstrate the different ways to steer pack-

ets with OpenNetVM: an SDN controller can provide flow
rules, the manager can redirect packets to load balance, and
NFs can divert flows based on packet data. The system be-
gins with a default service chain that sends all new packets
to the SDN NF if there is a Flow Director miss. The SDN
NF contacts our SDN controller for each new flow that ar-
rives. For this experiment, the controller returns (send to
IDS, send out port 1) for all flows, but this could be adjusted
dynamically. Once the rule has been installed into the Flow
Director, subsequent packets in that flow are sent directly to
a fake IDS NF instead of to the SDN NF.

When the workload on the IDS NF rises, we start an addi-
tional replica with the same service ID. Booting up this NF
in a Docker container takes on average 0.526 seconds from
when the container is started to when the NF receives its first
packet (an insignificant difference from 0.524 sec with na-
tive processes). This is substantially faster than KVM VMs,
which took at least 12 seconds to initialize in our NetVM
platform. Once the NF is initialized, the manager will auto-
matically load balance packets across the two replicas.

Later, we mimic a case where the IDS NF detects sus-
picious traffic. When this happens, the IDS diverts some
packets from the original service chain based on their con-

tent. The IDS NF is able to directly steer packets (subject to
any constraints imposed by the manager) without interact-
ing with the SDN controller. OpenNetVM supports this type
of smart data plane behavior in order to reduce the load on
SDN controllers and increase the agility with which packets
can be redirected.

6. CONCLUSION
OpenNetVM is a scalable and efficient packet process-

ing framework that supports dynamic steering of packets
through service chains. Unlike prior approaches with lim-
ited programming paradigms or restrictive runtime environ-
ments, OpenNetVM deploys network functions in Docker
Containers, facilitating development of NFs by diverse ser-
vice providers, while minimizing memory consumption and
startup time. OpenNetVM leverages DPDK for high per-
formance I/O, and achieves a throughput of 68 Gbps using
only six CPU cores. This opens up the possibility for com-
plex software based services to run deep within the network
and data centers. We have released OpenNetVM, for the
community’s use, providing both source code and experi-
ment templates on the NSF CloudLab platform. We believe
OpenNetVM will provide an ideal basis for NFV/SDN ex-
perimentation and commercial prototype development.

Acknowledgements: This work was supported in part by
NSF grants CNS-1422362 and CNS-1522546.

References
[1] L. Deri and others. Improving passive packet capture: Beyond

device polling. In Proceedings of SANE, volume 2004, pages
85–93. Amsterdam, Netherlands, 2004.

[2] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Rat-
nasamy. Softnic: A software nic to augment hardware. Tech-
nical report, Technical Report UCB/EECS-2015-155, EECS
Department, University of California, Berkeley, 2015.

[3] J. Hwang, K. Ramakrishnan, and T. Wood. NetVM: High
Performance and Flexible Networking using Virtualization on
Commodity Platforms. In Symposium on Networked System
Design and Implementation, NSDI 14, Apr. 2014.

[4] E. T. S. Institute. Network Functions Virtualisation. In SDN
and OpenFlow World Congress, 2012.

[5] Intel. Data plane development kit.
[6] E. Kohler. The Click Modular Router. PhD Thesis, 2000.
[7] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,

R. Bifulco, and F. Huici. ClickOS and the Art of Network
Function Virtualization. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14), pages
459–473, Seattle, WA, Apr. 2014. USENIX Association.

[8] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy,
L. Rizzo, and S. Shenker. E2: A Framework for NFV Ap-
plications. In Proceedings of the 25th Symposium on Operat-
ing Systems Principles, SOSP ’15, pages 121–136, New York,
NY, USA, 2015. ACM.

[9] L. Rizzo. netmap: A Novel Framework for Fast Packet I/O.
In USENIX Annual Technical Conference, pages 101–112,
Berkeley, CA, 2012. USENIX.

[10] L. Rizzo and G. Lettieri. VALE, a Switched Ethernet for Vir-
tual Machines. In Proceedings of the 8th International Con-
ference on Emerging Networking Experiments and Technolo-
gies, CoNEXT ’12, pages 61–72, New York, NY, USA, 2012.
ACM.

