
Living on the Edge: Serverless Computing and the
Cost of Failure Resiliency

Sameer G Kulkarni†, Guyue Liu‡, K. K. Ramakrishnan†, and Timothy Wood‡
†University of California, Riverside, ‡George Washington University.

Abstract—Serverless computing platforms have gained popu-
larity because they allow easy deployment of services in a highly
scalable and cost-effective manner. By enabling just-in-time
startup of container-based services, these platforms can achieve
good multiplexing and automatically respond to traffic growth,
making them particularly desirable for edge cloud data centers
where resources are scarce. Edge cloud data centers are also
gaining attention because of their promise to provide responsive,
low-latency shared computing and storage resources. Bringing
serverless capabilities to edge cloud data centers must continue
to achieve the goals of low latency and reliability. The reliability
guarantees provided by serverless computing however are weak,
with node failures causing requests to be dropped or executed
multiple times. Thus serverless computing only provides a best
effort infrastructure, leaving application developers responsible
for implementing stronger reliability guarantees at a higher level.
Current approaches for providing stronger semantics such as
“exactly once” guarantees could be integrated into serverless
platforms, but they come at high cost in terms of both latency
and resource consumption. As edge cloud services move towards
applications such as autonomous vehicle control that require
strong guarantees for both reliability and performance, these
approaches may no longer be sufficient. In this paper we evaluate
the latency, throughput, and resource costs of providing different
reliability guarantees, with a focus on these emerging edge cloud
platforms and applications.

I. INTRODUCTION
Edge computing [1] seeks to provide more responsive ser-

vice to users, with the promise of access to shared computing
and storage with low latency, thus enabling and encouraging
offloading processing from end-devices. It also reduces core
bandwidth costs by moving cloud-resident applications closer
to users. Reducing the latency costs from tens of milliseconds
to one millisecond opens a new range of cloud application
types related to Cyber Physical Systems (CPS) and the Internet
of Things (IoT) [1]. Applications such as autonomous vehicle
control and live sensor feed analysis require both strong
performance and reliability guarantees, e.g., mission critical
communication IoT use cases such as factory automation and
autonomous vehicles demand latency in the range of 250µs-
10ms and a reliability of 10−9 packet loss rate [2].

Cloud computing’s fundamental appeal arises from the
exploitation of multiplexing computing and storage by sharing
resources and thus lowering costs to end-users. Serverless
computing takes this multiplexing to the next level by reducing
the time resources are committed to a particular user or
application to just the time needed to execute an invoked
function. Serverless computing thus provides a new approach
to managing cloud resources by deploying applications in dy-
namically instantiated containers. For instance, Amazon pro-
vides AWS-Lambda [3], an event-driven, serverless computing

platform that enables to implement and deploy application
code in any of the supported languages (Python, NodeJS,
Java, C#, Go, Ruby, and Powershell), and execute on-demand
as docker-containers. The serverless infrastructure manages
the queuing of requests and can automatically scale backend
service containers to meet fluctuating demands. The elastic
nature of serverless computing makes it an ideal match for
edge computing data centers, where the small scale of each site
places tight restrictions on the number of servers that can be
deployed there. Unlike mega-data-centers, the limited capacity
of an edge data center requires efficient use of resources
with applications only consuming the resources they need.
This minimizes waste and fragmentation compared to the
traditional approach of deploying fixed size virtual machines
with dedicated resources for time periods of hours or days.

Unfortunately, the combination of serverless and edge com-
puting is not as perfect a fit as it initially appears. It is well
known that serverless computing can incur high overhead if
requests reach a “cold” service, causing delays on the order
of hundreds of milliseconds to instantiate a new container. In
this paper we focus on a second, less explored challenge: the
difficulty of providing reliable processing with a serverless-
based infrastructure. Just as people have come to depend
on network-based services and cloud computing facilities to
be as reliable as their own dedicated computing systems,
serverless computing needs to evolve and mature to achieve
the same reliability expectations. We believe that the limited
reliability semantics of today’s serverless platforms (e.g., AWS
Lambda and Microsoft Azure functions support only at-least
once semantics) poses high risk for emerging CPS and IoT
applications, leaving them truly “living on the edge” in terms
of the risk of failure and its consequences.

A number of the edge computing applications mentioned
above depend on high throughput and low latency processing
of streaming applications. While ‘traditional’ stream process-
ing frameworks are designed for applications with dedicated
resources (at least for significant time periods), their func-
tionality is likely to be needed in the serverless context.
Moreover, they typically reside on large-scale data centers
that are built and managed for being resilient to failures with
redundant resources, we see them having to also evolve to
be supported on edge data centers. Furthermore, the edge
computing applications such as for IoT and CPS as well as
even some vehicular applications may have varying reliability
requirements. Some, by the nature of disseminating and pro-
cessing data in an idempotent manner may require little or no
reliability guarantees, and ‘only’ require good responsiveness.
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On the other hand, there are many applications, such as
vehicular safety, processing medical data etc., that require high
reliability, and the environment needs to be robust to failures.
Thus, it is useful to understand the costs of providing failure
resiliency of these stream processing frameworks so that we
can examine their utility for serverless computing in an edge
computing environment, and also how this failure resiliency
can be configured appropriately on an as-needed basis.

In this paper we systematically evaluate the costs associated
with providing different reliability guarantees. We use Apache-
Storm/Trident [4] and Apache-Kafka [5] stream processing
frameworks to evaluate the throughput, latency, and resource
cost associated with request processing ranging from best
effort service to exactly once guarantees.

II. BACKGROUND

We look at a canonical serverless architecture and examine
its applicability for an Edge Cloud computing platform sup-
porting stream based applications like IoT, data analytics, and
(responsive) web applications.

A. Serverless Computing
Serverless computing is a system architecture paradigm that

incorporates the “Backend as a Service” (BaaS) i.e., services
like storage (object store and/or key-value databases), messag-
ing (push event notifications), user management (authentica-
tion, authorization) etc. , and “Functions as a Service (FaaS)
i.e., provide the capability to deploy and run user-custom
code in ephemeral containers on a compute platform. Figure 1
describes the typical architecture of Serverless, where the user
requests (Rest API) can be processed by any of the executors
(function containers). Thus serverless computing removes the
need for a traditional always-on server components.
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Fig. 1: Serverless Architecture: Users generate requests
through the Restful interface. API gateway triggers the ex-
ecution of functions based on the requested events. Backend
database is used to store the configuration and processing state.

Serverless architectures seek to significantly reduce the
operational cost and complexity, and greatly improve service
scalability and availability [6]. However, supporting low-
latency stateful services and providing reliable services with
guaranteed stream processing semantics are key challenges
affecting the applicability of serverless computing paradigm
to many sensitive web applications.

B. Stream Processing
Stream processing, also referred to as event processing,

refers to continuous processing of unbounded series of data
or events [7]. Stream processing can be described using the
directed acyclic graph (DAG), where the edges represent the
flow of data/events and the vertices represent the operations/-
functions that are application-specific logic to process data.

Stream processing allows applications to readily exploit
a limited form of parallel processing in-terms of both task
parallelism (e.g., Storm) and data parallelism (e.g., Kafka,
Spark) [8]. Note that stream processing includes the event-
stream processing and reactive programming models that
enable processing of functions and generation of new events
in reaction to processed data/events, elements which are com-
monly employed in Serverless computing as well.

Stream processing engines execute the processing graph
of streams, and allow injection of events into the processing
graph. Users write code to create stream processing operations
and chain them together into a processing graph, which can
then be run exploiting parallelism in a cluster of computing
devices. Stream processing engines tend to be natively parallel
and distributed and may span multiple data centers [9]. Thus,
stream processing platforms can form the basis of serverless
computing. In addition, Stream processing can be either state-
less or stateful. In the latter case, the state is usually stored
in some external data-store (database), and this externalized
state-store concept is extensively employed in serverless ar-
chitectures to persist state across invocations. Furthermore,
works [10], [11] have demonstrated the feasibility of using
serverless computing for big-data stream processing engines
like Spark and Flint.

C. Stream or Event Processing Reliability Semantics
Different types of failures, e.g., of network links, machines

(server nodes) and software process crashes etc., can result in
loss of data and inconsistent stream processing across the data
center. Stream/event processing platforms provide different
reliability modes or the processing semantics for the data
stream to provide failure resiliency for streaming applications.
Accordingly, there are three different modes (at-most once,
at-least once, and exactly once), provided by the streaming
platforms as described below:
• At-most once: In this approach, sending a message/event

from sender to receiver provides no guarantee that a given
message will be delivered and executed upon. Any given
message may be delivered once or it may not be delivered
at all. In a nutshell this is a ‘Best-effort’ approach where a
data loss is possible.

• At-least once: This approach ensures that sending a mes-
sage/event guarantees the delivery of message at least once.
However, in the event of anomalies, the message could be
delivered more than once. Thus, it is a ‘No-loss model’
where the messages are guaranteed to be delivered at-least
once, and they may be redelivered (possible duplicate that
are processed again). This approach requires the sender and
receiver to actively participate and coordinate on message
request or delivery in the events of failure.
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• Exactly once: This is a ‘No-loss, no-duplicates model’
where messages are guaranteed to be delivered only-once.
This approach also requires the sender and receiver to
actively participate and coordinate on message request or
delivery in the event of a failure and additionally they need
to provide the transaction semantics for state update and
state roll-back for recovery.

D. Evaluation Platforms: Apache Kafka and Storm
We consider several aspects as the key decision factors for

different streaming platforms, namely: Reliability, Latency,
Scale, and Throughput. Storm [4] is considered to be the
highest performance streaming engine with low-latency, while
Kakfa [9] is the most widely deployed platform that is
leveraged as either a distributed messaging platform in several
streaming platforms (e.g., Spark, Storm, Flink, etc) or can be
deployed entirely as a stream processing platform. Further,
Kafka and Storm/Trident are two of the streaming platforms
that can support and guarantee exactly-once processing se-
mantics, while most of the other streaming platforms tend to
be best-effort which can guarantee either only-once (at-most
once) or at-least once processing semantics [12], [13].

Fig. 2: Architecture of Apache-Storm: A low-latency stream
processing platform. Storm cluster constitutes of the Nimbus
(master) node and supervisor (worker) nodes. Zookeeper hosts
the storm cluster, executor and topology configurations.

III. STREAMING PLATFORMS: STORM AND KAFKA

Today’s cloud environments support several stream pro-
cessing platforms, such as Apache Spark [14], Samza [13],
Flink [15], etc. We briefly describe the streaming platforms
used in this work, Apache Storm [4] and Apache Kafka [5].
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Fig. 3: Storm Topology with Kafka messaging broker. Pro-
ducers publish the results to Kafka Broker; Storm’s Kafka
Spouts consume the messages from Kafka and emit to the
Bolts, which process on these messages and emit the output.

A. Apache Storm

Apache Storm [4] is an open source distributed real-time
stream processing platform. Storm provides a scalable archi-
tecture for processing unbounded data streams at scale and
provides strong fault tolerance mechanisms. The key compo-
nents of the Apache Storm stream processing framework are:

• Tuples: correspond to a unit of data in the data stream. It
is a named list of values, where each value can be of any
type and can be dynamically typed i.e., the field types do
not need to be declared.

• Spouts: represent the source of the data stream. Spouts can
read data from different data sources such as a database,
distributed file system, messaging framework like Kafka,
etc. Spouts generate a stream of tuples that can be fed into
a network of bolts (see below) to carry out the required data
processing. Spouts can broadly be classified into two types:

1) Unreliable: They provide ’at-most once message pro-
cessing’ semantics, and do not have the capability to
replay the tuples. Once a tuple is emitted, it can not be
replayed irrespective of whether the tuple got processed
successfully or not.

2) Reliable: These can provide ’at-least once or exactly once
message processing’ and have the capability to replay
tuples in the event of any failures.

• Bolts: represent the processing logic or the functions in
Storm. Different operations such as filtering, aggregating,
joining, etc. can be realized with Bolts. They process the
tuples and can also anchor and emit a new stream of tuples.

Figure 2 shows an Apache Storm cluster architecture’s com-
ponents. It is made up of two types of processes, namely i)
Nimbus and ii) Supervisor. Nimbus is a process running on
a master node that is responsible for tracking the progress of
data processing while the Supervisor process runs on worker
nodes and is responsible for executing the data processing
logic. Nimbus is responsible for scheduling, monitoring, and
distributing the stream processing tasks. Zookeeper is used
to manage the Storm cluster and monitor heartbeats from the
workers and supervisors.

Reliability modes: Storm can at-best guarantee that every
event will be processed “at-least once”. Trident is a high-
level abstraction built on top of Storm, and provides the
primitives for performing stateful processing through the use
of a database or persistence store to provide ’exactly-once’
processing semantics. Another notable difference is that un-
like Storm which performs tuple-by-tuple processing, Trident
processes the stream of tuples in ‘mini-batches’. This allows to
provide the notion of transaction, by assigning a transactionID
for each of the processed batch of tuples. Trident performs
beginCommit() at the beginning of each batch and once
all processing for the batch of tuples completes successfully,
the transaction is considered to be successful and Trident will
call Commit() at the end to update the state. However, in the
event of any failure in processing for any of the tuples in the
batch, Trident requests for the entire batch to be re-transmitted.
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B. Apache Kafka

Kafka, as a distributed messaging system, is one of the
common component included in other stream processing en-
gines like Storm [4], Spark [14], etc. for scalability purposes.
Figure 3 shows the usage of Kafka as a distributed messaging
broker in the Storm streaming platform. This enables the
persistence of messages in the Kafka partitioned topics (can
be across multiple nodes in the case of cluster) and improves
on the reliability of processing the messages in the event of
any failures with Storm cluster. There are three key concepts
in Kafka as described below:
• Record & Topic: Kafka uses a cluster of servers to store

streams of records, and each record has a key, a value, and
a timestamp. These records are classified into topics.

• Producer: publishes the records to one or more topics. From
Kafka 0.11 release on-wards, the producer can be configured
to function in an idempotent and transactional mode, which
strengthens the delivery semantics from providing at-least
once to exactly once semantics.

• Consumer: subscribes to different topics of their interest
and receive the records produced in them. Each consumer
belongs to a ‘consumer group’ and cooperatively works with
other consumers to achieve load balancing and resiliency.

Reliability modes: Kafka supports both ‘at-least once’ and
exactly-once’ delivery semantics. Kafka’s exactly once seman-
tics is built on top of idempotency and transaction features.
Idempotency is achieved by using a sequence number to
de-duplicate the duplicate (multiple) writes, and transaction
allows for atomic writes across multiple topics. These two fea-
tures together offer end-to-end ‘exactly-once’ guarantees for
Kafka Streams. Also, for the stream processing applications
like Storm, Spark, that extend from Kafka can ensure exactly-
once provided the streams can rewind the offsets and rollback
the corresponding external state updates.

IV. EVALUATION

We describe our evaluation testbed and demonstrate the
overheads incurred for supporting different reliability seman-
tics with two different streaming platforms Apache Storm and
Apache Kafka.

A. Evaluation setup
1) Hardware: Our experimental testbed used the Intel(R)

Xeon(R) Gold 6148 CPU @ 2.40GHz dual-socket server with
20 cores each with hyper-threading enabled and 252GB RAM,
running Ubuntu SMP Linux kernel 4.4.0-142-generic.

2) Software: We deployed the following software packages:
i) Apache-Storm ver. 1.2.2, ii) Zookeeper ver. 3.4.13 and iii)
Apache Kafka ver. 2.1.0.

3) Workload: Due to the lack of standard benchmarks for
real-world streaming platforms, we make use of the available
benchmark tools deployed in earlier works [8], [12] and
extend them to fit our evaluation needs. We evaluated for both
reliable and unreliable stream processing for the three different
reliability semantics discussed in Section II-C. The evaluation
platform configurations for the three reliability variants for
message processing are shown in Table I.

Reliability Semantics Test Platforms & Topology Description
at-most once Apache Storm without Kafka Broker
(Unreliable) Storm Spouts without acknowledgement (ack)
at-least once i) Apache Storm + Kafka Broker, ii) Kafka Streams
(Reliable) Kafka producer & Storm Spouts with ack
exactly-once i) Trident + Kafka Broker, ii) Kafka Streams
(Reliable) Kafka producer & Trident Spouts with ack

TABLE I: Streaming platforms used for evaluation.

B. Analysis with Trident/Storm
For Apache Storm and Trident experiments, we extend In-

tel’s Storm-benchmark package [16] and implemented variants
of WordCount topology, which provides a good measure of the
overhead introduced by Storm as the Spouts and Bolts in this
topology do minimal work [12]. This WordCount topology
demonstrates a very simple streaming example consisting of
spouts and two bolts. Spouts read sentences from a given
source file (input stream of data) and emit them to the ‘Split’
bolts. The split bolts in turn split these sentences into words
and send to the ‘Count’ bolt where the count of words is
updated.
We configure the Storm, Trident stream and topology param-
eters as shown in the Table II. Also, we configure the Kafka
stream producers to use the same number (4) of producer
spouts. In order to keep the replication overhead minimal, we
set the Kafka message replication factor to 1.

Configuration parameter Value
topology.workers 4
topology.acker.executors 4
topology.max.spout.pending 200
component.spout num 4
component.split bolt num 8
component.count bolt num 8

TABLE II: WordCount Topology configurations used for the
Storm and Trident experiments.

Impact on Throughput and Latency: Figure 4 compares
the throughput (i.e., the number of messages processed per
second) for different reliability modes (note the log scale
for the Y-axis). We observe that the at-most once processing
mode provides ∼850K messages per second (mps), while
the throughput drops by 4X with at-least once semantics
resulting in ∼150-200Kmps. Further, exactly-once semantics
drastically degrades the throughput even more, providing at-
best ∼85Kmps and intermittently not processing any messages
for brief periods. The corresponding impact on latency is
shown in Figure 5. We observe an average processing latency
of 5ms for both at-most and at-least once semantics, while
there is an order of magnitude increase in latency ∼8X-20X
for the exactly-once (transactional) mode1

Impact on Resource utilization: We also collect the CPU
and disk usage statistics (averaged over a 10 seconds interval)
using the ‘dstat’ tool [17]. Figure 6 shows the CPU utilization
observed across the three modes. we can observe that the CPU
utilization increases by ∼4X for both at-least and exactly-once
semantics in comparison to the at-most once mode. We also

1We only plot the first 10 minutes of the results, which indicate that the
latency levels off. But, we observed that latency rises back up intermittently
to 100ms when the tests were run for a longer interval (30+ minutes).
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Fig. 4: Message processing throughput for different messaging
semantics with Storm and Trident.
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Fig. 5: Latency (in milliseconds) for different reliability se-
mantics with Storm and Trident.

profile the disk read and write usage statistics and observe
∼10X increase in the disk usage for the at-least and exactly-
once semantic experiments as shown in Figure 7. We noticed
most of disk usage to be due to the disk writes performed
by the Kafka producer and commit state updates by Trident.
Note, the CPU and disk usage per work done (throughput) is
far worse (2X-20X) for exactly-once mode than the at-least
once mode.
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Fig. 6: Avg. CPU usage for different reliability semantics.

C. Analysis with Kafka Streams

We measure the performance of Kafka by running the Word-
Count streaming application. For these experiments, we switch
the producer into the non-transactional mode and transactional
mode with a commit interval of 1ms, 10ms, and 100ms. As
shown in Figure 8, compared to the nontransactional mode,
a large 100ms commit interval makes the throughput drop by
2X. But, even more importantly, a small 1ms commit interval
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Fig. 7: Avg. Disk usage (bytes written) for different reliability
semantics with Storm and Trident.

leads to 58X degradation for 64B records and 11X degradation
for 1024B records. To evaluate the latency overheads, we
throttle the sending rate to 1MB/s to avoid large, unnecessary
queuing latency. As shown in Figure 9, a 100ms commit
interval has an average 3.3ms latency, but a 1ms commit
interval incurs an average 21ms latency which is 12X and
83X larger than the non-transactional mode.
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Fig. 8: Throughput for Kafka with non-transactional and
transactional models with different commit intervals
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To summarize, these non-negligible overheads pose chal-
lenges when using the streaming platforms like Storm, Kafka
for emerging edge and serverless based applications that have
strict reliability, correctness and latency requirements, and
requires us to re-examine existing solutions.

V. RELATED WORK

Serverless and Edge Computing: Previous works have ex-
plored various problems associated with serverless computing.
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Notably, with the focus on large-scale data centers, [18], [19],
[20], [21] have studied issues pertaining to the pricing model,
programming model, autoscaling, and startup delay associated
with the serverless computing. Some of the projects [10], [11]
have looked at how to apply the serverless model into big data
stream processing engines. However, the latency and reliability
issues of using the serverless computing model at the edge
haven’t yet drawn much attention.
Streaming Engine Analysis: Works [8], [22], [23], [24] have
compared different stream processing platforms. However,
they focus primarily on the comparison of supported features
and evaluate throughput, latency through tests over different
distances to the data center. In contrast, our work focuses
on the overheads and impact on throughput, latency and
resource utilization for providing different reliability semantics
for stream processing.

VI. CONCLUSION AND FUTURE WORK

To summarize, in this work, we have looked at Serverless
Computing - an emerging paradigm replacing many of the
stream/event processing based web applications. We high-
lighted the difficulty of current Serverless applications in
achieving reliable event/data processing.

We evaluated the overheads associated with providing
‘exactly-once’ reliable message processing semantics with the
state-of-the-art streaming platforms like Apache Storm/Trident
and Apache Kafka. Because of the significant overheads, there
is a large performance degradation both in terms of latency
(increases almost 20X-80X), and throughput (drops by 4X-
50X). In addition, the resource overheads, specifically the CPU
and disk usage, are around 4X-10X increase. Hence, we reason
that the direct adoption of such approaches with serverless
computing at the edge may be problematic, bordering on being
infeasible. These mechanisms as implemented would greatly
hinder the efficient operation of edge computing resources.
We believe it is necessary to revisit these mechanisms for
providing reliable processing and failure resiliency approaches
for edge computing.
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