
Formalizing an Architectural Model of a
Trustworthy Edge IoT Security Gateway‡

Matt McCormack,∗ Amit Vasudevan,† Guyue Liu,∗ Vyas Sekar∗
∗Carnegie Mellon University - CyLab, †Carnegie Mellon Software Engineering Institute

Abstract—Today’s edge networks continue to see an increasing
number of deployed IoT devices. These IoT devices aim to
increase productivity and efficiency; however, they are plagued
by a myriad of vulnerabilities. Industry and academia have
proposed protecting these devices by deploying a “bolt-on”
security gateway to these edge networks. The gateway applies
security protections at the network level. While security gateways
are an attractive solution, they raise a fundamental concern: Can
the bolt-on security gateway be trusted?

This paper identifies key challenges in realizing this goal
and sketches a roadmap for providing trust in bolt-on edge
IoT security gateways. Specifically, we show the promise of
using a micro-hypervisor driven approach for delivering practical
(deployable today) trust that is catered to both end-users and
gateway vendors alike in terms of cost, generality, capabilities,
and performance. We describe the challenges in establishing
trust on today’s edge security gateways, formalize the adversary
and trust properties, describe our system architecture, encode
and prove our architecture trust properties using the Alloy
formal modeling language. We foresee our trustworthy security
gateway architecture becoming a practical and extensible formal
foundation towards realizing robust trust properties on today’s
edge security gateway implementations.

I. INTRODUCTION

IoT devices are increasingly being deployed into edge environ-
ments, from home networks to manufacturing floors. Unfortu-
nately, these devices are plagued by a myriad of vulnerabilities
[2], [3], which attackers have leveraged as stepping stones into
protected networks and as launch pads for other attacks [4]–
[7]. Consequently, these IoT devices pose a continuing threat
to the security of our edge networks.

Industry and academia have proposed securing (potentially
vulnerable) IoT devices on edge networks with on-site security
gateways [2], [8]–[13]. These “bolt-on” security gateways are
designed to intercept all traffic to and from an IoT device and
apply security protections via middleboxes at the network level
(e.g., a firewall). These middleboxes can be used to implement
“network patches” which mitigate a device’s vulnerabilities
without patching the device’s software.

While bolt-on security gateways are gaining popularity and
are a deployable solution, they raise a fundamental question:
How do we ensure that the system providing these network
level protections is trustworthy? As an example scenario,
consider a smart factory with a plethora of IoT devices
protected by multiple security gateways. The factory’s security

‡This paper is an extended version of a workshop paper presented in USENIX
Hot Topics in Edge Computing (HotEdge) 2020 [1].

gateways provide network level protections tailored to each
individual IoT device’s vulnerabilities. Unfortunately, security
gateways form a single point of failure. They are particularly
vulnerable to an adversary who can compromise the security
gateway (by exploiting OS and/or application vulnerabilities),
as the gateway typically runs commodity software (e.g., Linux,
Docker, OVS, Snort, etc.). Once compromised, an adversary
can modify the gateway’s protections (e.g., remove a firewall
rule) thereby enabling attacks against an IoT device in order
to stop/alter production (à la [14], [15]).

Current approaches for securing applications in untrusted
cloud environments could potentially be applied to establish
trust in security gateways. These approaches rely on hardware-
specific capabilities (e.g., SGX [16], [17], MPX [18]). Unfor-
tunately, such approaches have high performance overheads
(not practical for IoT deployments) and also lack generality.
They are limited to a specific processor class and only support
user space applications with constrained memory allocation.
Furthermore, addressing security vulnerabilities [19]–[21] re-
quires fabricating newer revisions of the hardware.

At a high level, we envision a trusted IoT security gateway
architecture, that provides an overarching guarantee that the
correct security protections are applied to each IoT device’s
network traffic at all times, including when under attack (more
details in §IV). We use this aforementioned definition of trust
throughout this paper. Our architecture aims to provide robust
trust properties to a broad range of legacy hardware platforms
utilizing existing software with a reasonable performance
overhead. There are three challenges to realizing our vision:
• Formalizing Adversary and Trust Properties (§IV): To

design a trusted architecture, we need to consider a rich
adversary model, where the adversary could attack any
software component and data in transit. Existing security
gateway architectures often utilize a software defined net-
work (SDN) architecture [2], where the data plane enforces
network level protections, and the control plane orchestrates
these protections to achieve a policy. While prior work on
SDN security [22]–[24] explored some attack scenarios, they
tackle a limited adversary model, only analyzing a subset of
the architecture (e.g., routing, application permissions). Both
control and data plane elements and their communications
must be protected to achieve trust.

• Supporting Dynamic Middleboxes (§V): The architec-
ture must provide trust in dynamic middleboxes that are
constantly being reconfigured (e.g., IoT devices frequently

193

2021 IEEE 27th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)

978-1-6654-4188-9/21/$31.00 ©2021 IEEE
DOI 10.1109/RTCSA52859.2021.00019

20
21

 IE
EE

 2
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
m

be
dd

ed
 a

nd
 R

ea
l-T

im
e

C
om

pu
tin

g
Sy

st
em

s a
nd

 A
pp

lic
at

io
ns

 (R
TC

SA
) |

 9
78

-1
-6

65
4-

41
88

-9
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
R

TC
SA

52
85

9.
20

21
.0

00
19

Authorized licensed use limited to: New York University. Downloaded on February 18,2022 at 12:35:36 UTC from IEEE Xplore. Restrictions apply.

leaving and joining edge networks). Prior work in cloud
computing proposed using secure hardware (e.g., SGX,
TrustZone), placing entire applications in a trusted exe-
cution environment (e.g., enclave). While this approach
could prevent tampering, it fails to support today’s dynamic
middleboxes due to limited available memory (e.g., 128MB
on SGX [25]), reduced functionality (e.g., inability to per-
form system calls [26] required for timestamps), and the
high performance costs of changing enclaves (e.g., reducing
performance by up to 30% [27], [28]). Furthermore, only
placing pieces of the application in an enclave suffers severe
performance costs [28]. An ideal solution provides trust to
legacy software on any hardware platform in a performant
manner.

• Secure and Efficient Communication (§VI): A trusted
security gateway requires secure communications, enforcing
protections at a per-packet granularity both between and
across the control and data planes. Existing tunneling tech-
niques (e.g., IPSec, TLS) could be used between planes, but
are too expensive for protecting across a plane (e.g., tunnel-
ing a packet between middleboxes on the data plane). Low
performance overheads are required for latency-sensitive
devices (e.g., real-time, closed-loop robot controllers).

In this paper, we argue that a micro-hypervisor based approach
is a promising architectural basis for building trust in edge
security gateways. A micro-hypervisor, like a traditional hy-
pervisor, is a software reference monitor that provides core
security capabilities (e.g., memory isolation, mediation, and
attestation) that can be applied to effectively address the
aforementioned challenges. In contrast to traditional hyper-
visors, these capabilities are provided with a dramatically
reduced trusted computing base (TCB) and complexity (hence
the micro prefix) which enable formal verification to rule
out potential vulnerabilities [29]–[31]. Furthermore, micro-
hypervisors provide an extensible foundation for realizing
robust trust properties without a loss of generality and minimal
performance overhead [29], [30], [32]–[34]. Last but not least,
in contrast to approaches using specific hardware capabilities
which limit applications (e.g., SGX’s limitations described
above), micro-hypervisors can support a variety of hardware
platforms (x86 [30], [33], ARM [32], microcontroller [31])
running unmodified software (e.g., Linux) [29], [31], [34].
Thus, a micro-hypervisor provides a practical and secure
foundation for building security mechanisms towards realizing
our vision.

Our intuition to leverage a micro-hypervisor based ap-
proach is motivated by the success micro-hypervisors have
had on commodity platforms [29]. However, to the best of our
knowledge, micro-hypervisors have not been used in edge IoT
gateways. To this end, our contributions are: (1) a more holistic
system adversary model and cardinal security properties for
an edge IoT security gateway; (2) a high-level architecture
based on micro-hypervisors to enable a practical and flexible
solution; and (3) a formal model of our IoT security gateway
architecture encoded in the Alloy formal modeling language
with proofs of foundational security properties. Our model and

Fig. 1: Attack vectors for bolt-on security architecture.

proofs can be found at: https://github.com/slab14/Gateway
Alloy Model

II. MOTIVATION

Traditional security solutions (e.g., antivirus) fall short for IoT
devices due to resource requirements and device heterogeneity
[2], [8]. Security gateway based approaches [2], [8], [10]–[13],
[35] have been proposed to secure IoT deployments.
“Bolt-on” Security Gateways: At a high level, these ap-
proaches insert a security gateway running virtualized mid-
dleboxes (e.g., firewall, IDS) to protect deployed IoT devices.
To achieve this, the gateway intercepts all traffic to and from
the IoT device and sends the network traffic to a middlebox
which imposes a security policy (e.g., IoT may not SSH).

While initially these security gateways employed a single
monolithic middlebox running a static configuration (e.g., an
IDS with a default ruleset), recent work [2], [8], [35] high-
lighted the need for isolated (e.g., each device has its own set
of middleboxes), device-specific (e.g., each middlebox config-
ured to protect a specific device’s vulnerabilities) middleboxes
that support dynamic security policies (e.g., changing based
upon context, such as other device’s status). The need for
these new capabilities has increased the complexity of the
security gateway architectures (shown in Fig. 1), adding virtual
switches (vSwitch) for routing data to the appropriate mid-
dleboxes and a remote controller for dynamically configuring
each gateway’s protections (e.g., middlebox configurations,
vSwitch routes) to achieve the security policy.

These “bolt-on” gateways are promising for securing IoT
deployments; however, they are currently untrusted. Under
attack, these security gateways could become ineffective, or
even worse, become a launchpad for new attacks.
Motivating Scenario: An attacker could launch attacks at
multiple points in the architecture (shown in Fig. 1). For
example, an attacker could: (1) use an unpatched exploit [36],
[37] to compromise the gateway itself (B in Fig. 1) and (2)
modify the middlebox configuration such that it allows the
attacker’s traffic to pass through to enable the attacker to
compromise a factory’s IoT device and steal proprietary data
(à la [7]). Beyond modifying the software, an attacker could
also tamper with network messages. For example, modifying
packets on the data channel between the vSwitch and the
middlebox (D in Fig. 1), redirecting traffic to the wrong
middlebox, evading security inspections.

A trusted security architecture needs to protect the gateway
and controller’s software while prohibiting tampering with
network traffic. We look to prior work for potential solutions.

294

Authorized licensed use limited to: New York University. Downloaded on February 18,2022 at 12:35:36 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Limits of prior piecemeal solutions providing
end-to-end trust in software-defined security architectures.
Approach Mitigates Limitations
Trusted hardware [16], [17] Attacks A & B Reduced performance & deployability
Path authentication [38]–[40] Attacks C & D Must trust software, protect secret keys

Limitations of Prior Work: Prior work has looked at secur-
ing individual pieces of this bolt-on software-defined security
architecture, but lacks end-to-end solutions (reference Table I).
In order to protect middleboxes from being modified, recent
work in securing middleboxes in untrusted cloud environments
(e.g., [16], [17]) placed middlebox in a trusted enclave (e.g.,
SGX, TrustZone). This could protect the middleboxes on the
gateway from modification (e.g., blocking Attack B in 1).
Unfortunately, these do not provide hollistic protection and
create high performance costs for communicating between
enclaves (e.g., placing the middlebox and vSwitch in separate
enclaves). Research on securing the controller (e.g., [41], [42])
has been limited to protecting the control plane from malicious
applications and ensuring consistency between the control and
data planes. Unfortunately, none provide runtime protections
against an attacker capable of compromising the OS.

Strawman Solution: A natural strawman solution would be
to run the gateway and controller software in an enclave, with a
secure tunnel (e.g., IPSec, TLS) protecting the control channel.
This solution has been used for securing middleboxes from
untrusted cloud providers [16], [17].

While this solution could prevent tampering with the gate-
way and controller software and protects control messages, it
requires specific hardware and has three key limitations. First,
only limited applications are supported. Applications running
inside an enclave have limited memory access (i.e., 128MB
for SGX) and can only perform user space actions (e.g., no
system calls). Second, there is a significant performance over-
head for initiating communication with an enclave, which is
magnified if multiple enclaves must be utilized (e.g., isolating
multiple middleboxes in a chain), impacting low-latency edge
devices. Third, vulnerabilities identified in trusted hardware
may require long timelines to patch. This approach would
be sufficient for a single, static protection on the gateway;
however, the need to support dynamic middleboxes which are
isolated and constantly changing entails a different approach.

Ideally, we want a solution that can be deployed on a wide
range of hardware platforms, including resource-constrained
edge platforms. Further, it needs to support existing software
applications, while adding minimal performance overhead.

III. TRUSTED SECURITY GATEWAY ARCHITECTURE

We envision a trusted, extensible, and widely-deployable edge
security gateway architecture that addresses the security chal-
lenges of today’s edge IoT deployments. When fully realized,
our architecture would enable new trustworthy “security-as-a-
service” offerings that providers (e.g., edge ISPs, CDNs, IoT
providers) could offer to IoT consumers, ensuring the correct
security protections are applied at all times. For instance, this

architecture could provide a trusted mechanism for enforcing
IoT security best practices (e.g., access-control policies in a
device’s Manufacturer Usage Description specification [43]).
System Assumptions: To scope our design space, we make
three assumptions about our trusted architecture.
• Only IP traffic: We scope our system to only providing

network protections to devices using an IP-based network.
While some devices use other protocols (e.g., BLE, ZigBee)
many use IP directly or connect to a hub on an IP network.

• Gateway is the first-hop: all packets to and from an IoT
device must go through the gateway as their first-hop. An
attacker cannot directly access an IoT device or use an evil
twin attack (e.g., [44]) to bypass the gateway.

• Correct middlebox implementation: device-specific protec-
tions are realized by a single middlebox. This middlebox
is capable of running multiple network functions (e.g., a
firewall and a proxy in the same middlebox). We assume that
these middleboxes are implemented correctly, able to detect
and block all network exploits targeting the IoT device they
are protecting. Further, they drop all packets not to the IoT
device they are protecting.
We can consider a strawman design space categorized along

two axes. First, approaches dependent on hardware functional-
ity (e.g., [16], [17]) are limited in both the hardware platforms
and software they can support. Additionally, their security
properties rest on a complex and opaque implementation in mi-
crocode and silicon [45], known to have vulnerabilities [19]–
[21]. Second, pure software approaches (e.g., formal verifi-
cation, secure programming languages) are limited as they
require significant reimplementation and verification effort. As
many commonly used software applications on edge security
gateways span over 100,000 lines of C/Java this quickly
becomes intractable.

We argue that it is dangerous to tie critical security features
to either hardware implementations that require new hardware
to address threats, or to software approaches that require
significant reimplementation or formal verification effort of
the entire software stack. Instead we advocate leveraging
legacy hardware features in combination with a small TCB
and extensible software framework to provide our fundamental
trust properties and protect edge devices from evolving threats.

Consequently, we make a case for a micro-hypervisor based
approach to enable a trusted edge security gateway architecture
(Fig. 2) that allows retrofitting security protections to only
the necessary system components. A micro-hypervisor is in
essence a software reference monitor [46], that acts as a
guardian, implementing access control to system resources
(e.g., files, sockets) using a small TCB. These protections
can be applied in a fine-grained manner, protecting a single
data value (e.g., secret key) or a complex set of objects
(e.g., virtual machine) with minimal performance overhead.
Micro-hypervisors provide a strong foundation for fine-grained
mediation, isolation, and attestation with a small TCB [29],
[30], [33], [47], which allows for security services to be
designed and implemented as extensions [29]. Due to their
simplicity and small TCB, micro-hypervisors are amenable

395

Authorized licensed use limited to: New York University. Downloaded on February 18,2022 at 12:35:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: High-level view of a trusted, extensible, and widely-
deployable edge security gateway architecture.

to formal verification for ruling out potential vulnerabilities
within their code [29], [31]. Additionally, micro-hypervisors
can potentially be supported on any hardware platform (e.g.,
x86 [30], [33], ARM [32], custom microcontroller [31]).

We build on top of the aforementioned micro-hypervisor en-
abled foundational capabilities to construct our trusted security
gateway architecture. The controller and gateway’s software
run on top of a micro-hypervisor, allowing us to support any
commodity OS and application stack. On the controller, we
migrate critical data (e.g., the security policy) into micro-
hypervisor extensions to isolate it from untrusted software
(e.g., the OS). Further, all access is mediated by the micro-
hypervisor, prohibiting an attacker from subverting the data’s
integrity. On the gateway, we assign a set of customized
middleboxes to each device and isolate these from each other.
Additionally, we periodically measure the signature of each
middlebox and the vSwitch to verify their integrity. Finally,
the controller and the gateway run trusted agents, which are
micro-hypervisor extensions used to mediate communication
between the control and data planes, to ensure the instantiated
protections correctly reflect the security policy.

An edge security gateway architecture built atop a micro-
hypervisor provides three key benefits:
• Fine-grained security: It provides fine-grained isolation

and mediation which allow for precisely ensuring that the
architecture enforces the correct protections while being
performant.

• Extensible: It is extensible allowing for rapid growth of new
security functionality and response to emerging threats.

• Deployable: It is widely-deployable, supporting a wide
range of hardware platforms (e.g., x86, ARM) while uti-
lizing existing software, with a low performance overhead
for providing trust.

Challenges: For our architecture to provide a holistic defense
against end-to-end attacks, it must address three challenges:
• Necessary Security Properties (§IV): Identify the security

properties that ensure trust under a holistic adversary model.
These properties guide the design of our architecture.

• Support Dynamic Middleboxes (§V): Enable protecting
the dynamic middleboxes required by an IoT environment,
ensuring an adversary cannot modify the protections.

• Secure Communications (§VI): Provide per-packet pro-
tections with a low performance impact, guaranteeing an

TABLE II: Holistic adversary capabilities, generated using
the STRIDE model (referencing Fig. 1’s attack vectors).

Example Threat Vector Violates
Modify controller software (e.g., security policy) A

Psw1, Psw2Modify gateway software (e.g., middlebox config) B
Spoof control channel message (e.g., vSwitch route) C Pcom1

Tamper with data channel message (e.g., skip middlebox) D Pcom2

adversary cannot modify or spoof packets.
We begin by formally defining our trust properties.

IV. ADVERSARY AND TRUST PROPERTIES

Our goal is to provide end-to-end protections against a holistic
threat model. Within the SDN domain, this would entail
protecting both the control and data planes (e.g., from BGP
hijacking [48], [49]). However, prior works on IoT security
gateways have typically only considered a narrow threat
model.

To this end, we systematically define such an adversary,
with a goal of inhibiting the gateway’s protections (i.e., enable
exploiting a protected IoT device). We assume our adversary
has knowledge of the security architecture as well as network
access to all devices. We group our adversary capabilities into
two categories: (1) ability to compromise a device’s software
stack (i.e., software on the controller or gateway; A, B in
Fig. 1), and (2) ability to inject/modify network messages (i.e.,
the control, data channels; C, D in Fig. 1).

We use the STRIDE threat modeling tool [50] to generate
a set of adversary capabilities (summarized in Table II), that
inhibit the architecture’s ability to protecting an IoT device.
While not a complete list, we use it to define the fundamental
security properties needed for our trusted architecture.

Based upon our adversary model (Table II), we posit that
there are a minimum of five fundamental properties required
for a trusted security gateway architecture.
• Software Integrity (Psw1): Ability to detect code and data

modifications (e.g., changes in middlebox configuration).
• Data Isolation (Psw2): Ability to isolate security critical

logic (e.g., keep the OS from accessing the security policy).
• Data Mediation (Psw3): Ability to have a trusted entity

mediate access to security critical data (e.g., blocking an
untrusted application’s access to secret keys).

• Secure Control Channel (Pcom1): Ability to trust data
transferred between the controller and gateway (e.g., the
gateway only executes commands from the controller).

• Secure Data Channel (Pcom2): Ability to that trust packets
are routed through the correct middleboxes (e.g., packets
should not be processed by a wrong middlebox).
To guide and inform the design of our trustworthy architec-

ture, we create a formal model of today’s software-defined IoT
security gateway architectures. This model helps us identify
critical components and interfaces of our architecture, formally
define and encode the corresponding architectural elements,
and prove desired trust properties.

496

Authorized licensed use limited to: New York University. Downloaded on February 18,2022 at 12:35:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Key components of JETFIRE architecture model.

A. Background on the Alloy Modeling

We build a formal model of bolt-on IoT security architec-
tures using the Alloy modeling language [51] (see Listing 1).
Alloy models are defined using first-order, relational logic. At
its core, the Alloy language is an easy to use but expressive
logic based on the notion of relations, and was inspired by the
Z specification language and Tarski’s relational calculus [51].

The Alloy model is compiled into a scope-bounded satisfia-
bility problem and analyzed by off-the-shelf SAT solvers. This
analysis can be used to identify if an instance of the model
exists and to identify counterexamples to constraints. We use
this analysis to identify attack vectors, refine our security
architecture, and to formalize our trust properties (§IV-C).

B. Model Description and Semantics

Our bolt-on software-defined IoT security architecture
model (seen in Fig. 3) consists of a centralized controller and a
set of gateways that process packets to and from IoT devices.
For brevity, we discuss an example architecture with single
gateway to explain our abridged Alloy model in Listing 1 (the
full model can be found in [52]).

We first model two key entities: a Controller and a
Gateway using Alloy’s sig interface (lines 1-10). A sig, or
signature, defines a set (i.e., Controller) and its relationship
to other signatures (i.e., each Controller has one Policy,
line 2). The controller maintains the security policy and uses
the control channel to configure each gateway based on the
policy. Each gateway is managed by the associated controller.
The gateway receives its policy over the control channel
and installs paths in the vSwitch and then instantiates the
middleboxes. Each path specifies which middlebox a specific
IoT device’s traffic should be routed through.

Then we model how the gateway processes packets using
Alloy’s fun interface (lines 11-18). A function evaluates a
series of statements and returns all possible solutions. A packet
received by the gateway is sent to the vSwitch for routing.
The vSwitch routes the packet to the specific middlebox
(ROUTEPKT, line 12). Then the middlebox processes the
packet and determines if the packet is benign or malicious
(MIDDLEBOXPROCESS, lines 13). Packets that are benign are
routed back to the switch and then sent out to the IoT device
while all other packets are dropped.

Listing 1 Abridged formal model of JETFIRE’s trusted
software-defined security gateway architecture.
1: sig Controller {
2: policy : one Policy ,
3: cntrlChannel: one Channel
4: }

5: sig Gateway {
6: vswitch : one vSwitch ,
7: mbox : set Middlebox ,
8: controller : one Controller ,
9: cntrlChannel: one Channel

10: }

11: function PROCESSPKT(pkt : Packet , g : Gateway)
12: g.mboxi = ROUTEPKT(pkt , g.vswitch)
13: pkt .state = MIDDLEBOXPROCESS(pkt , g.mboxi)
14: if pkt .state == Benign then
15: pkt .action = Allow
16: else
17: pkt .action = Drop
18: return pkt .action

19: pred TRUSTEDGATEWAY(g : Gateway, c : Controller)
20: c == g.controller
21: TAMPERPROOF(c.policy)
22: SECURECHANNEL(g.cntrlChannel , c.cntrlChannel)
23: REMOTEATTEST(g.controller)
24: REMOTEATTEST(g.vswitch)
25: for g.mboxi in c.policy do
26: REMOTEATTEST(g.mboxi)
27: AUTHENTICATEROUTE(g.vswitch, g.mboxi)

28: assert PROCESSPKTCORRECTLY(g : Gateway, pkt : Packet)
29: TRUSTEDGATEWAY(g)
30: pkt ∈ BenignPkts =⇒ PROCESSPKT(pkt , g) == Allow
31: pkt ∈ MaliciousPkts =⇒ PROCESSPKT(pkt , g) == Drop

Next, we define a trusted gateway architecture using Alloy’s
pred interface (lines 19-27). A pred, or predicate, evaluates
a series of constraints. It returns true only if all the constraints
are met and false otherwise. Thus, the following conditions
must all be met for an architecture to be trusted. First, an
attacker must not be able to tamper with the policy on
the controller (TAMPERPROOF is true in line 21). Second,
the control channel between the controller and the gateway
must be secure so that it is immune to an attacker injecting
malicious messages (SECURECHANNEL is true in line 22).
Third, the correct software must be running on the controller,
vSwitch, and middlebox (CORRECTSW is true for lines 23-
26). Finally, each packet must follow the path specified by the
controller and enforced by the vSwitch and each middlebox
(AUTHENTICATEROUTE is true in line 27). If all of these
conditions are true then the gateway architecture is trusted.

Finally, we define our goal that all output packets were
processed correctly using Alloy’s assert interface (lines 28-
31). In Alloy, an assert claims that a series of statements
must be true based upon the model, and will generate a
counterexample if any of the claims do not hold to be true. A
trusted gateway architecture can achieve this goal. Specifically,
it allows all benign packets while dropping all malicious
packets.

597

Authorized licensed use limited to: New York University. Downloaded on February 18,2022 at 12:35:36 UTC from IEEE Xplore. Restrictions apply.

Listing 2 Alloy model of policy isolation and mediation.
1: pred TAMPERPROOF(obj : Object)
2: ISOLATEDMEMORY(obj)
3: MEDIATEDACCESS(obj)

4: assert TRUSTWORTHYPOLICY(c : Controller)
5: TAMPERPROOF(c.policy)

C. Security Properties

Using our architectural model and semantics, we formally
define our overarching security property and its sub-properties.

Overarching Security Property: Given a network where all
of an IoT device’s inbound and outbound traffic goes through
our trusted security gateway GW , our goal is to ensure that
any packet pkt output by the gateway was processed by the
correct middlebox, so that benign packets are allowed and
malicious packets are dropped (modeled in Listing 1). This
can be denoted as:

∀pkt ∈ BenignPkt , processPkt(pkt ,GW) = Allow
∀pkt ∈ MaliciousPkt , processPkt(pkt ,GW) = Drop

(1)

To achieve this property in the presence of an attacker, we must
ensure the gateway architecture is trusted, expressed formally:

TrustedGateway(GW ,Controller) ⇐⇒
tamperProof (policy)∧

correctInstance(GW ,Controller) ∧
secureChannel(GW ,Controller) ∧

∀mboxi , authenticateRoute(vSwitch,mboxi)

(2)

Where: GW = {channel , vSwitch, {mbox0 , . . . ,mboxn}}
Controller = {channel , policy}

We realized Equations 1 and 2 in Alloy, as shown in
Listing 1. Where we instantiate a gateway architecture with a
controller and gateway that processes packets using a software
middlebox. The PROCESSPKT function determines if each
packet is either benign and allowed to be forwarded to its final
destination or malicious and dropped. The TRUSTEDGATEWAY
predicate tests if an architecture (composed of a gateway and a
controller) is trustworthy. Where it verifies that the controller is
assigned to the gateway, that the controller’s security policy is
tamper proof, the channel between the controller and gateway
is secure, that the controller, vswitch, and all middleboxes is
attested to be correct, and that each packet being processed
follows an authenticated route. A gateway meeting these
requirements ensures that all benign packets are allowed and
malicious packets are dropped (confirmed with the assert
statement).

We further decompose our overarching security property
into four sub-properties. These sub-properties can be broadly
grouped into two categories: (1) protecting data and running
code (Psw1, Psw2) and (2) protecting network communications
(Pcom1, Pcom2). Next, let’s look at each of them in detail.

Listing 3 Alloy model of instance validation.
1: pred REMOTEATTEST(obj : Object)
2: CORRECTSOFTWARE(obj)
3: ATTESTCORRECTNESS(obj)

4: assert CORRECTINSTANCE(c : Controller)
5: REMOTEATTEST(c)

6: assert CORRECTINSTANCE(g : Gateway)
7: REMOTEATTEST(g.vswitch)
8: for g.mboxi in g do
9: REMOTEATTEST(g.mboxi)

Security Policy Isolation and Mediation (Psw1): The
first sub-property is to protect the security policy stored in
the controller. Controller applications are subject to attacks
[53], [54] which make the security policy vulnerable. As the
correctness of the rest of the system is based upon this policy,
we need to ensure it is tamper proof. To achieve this, the
security policy needs to be isolated in protected memory and
all access requires mediation by a trusted entity (modeled in
Listing 2). Such defenses block the OS and other untrusted
applications from accessing and modifying the security policy.
This can be denoted as:

tamperProof (policy) ⇐⇒
isolatedMemory(policy) ∧mediatedAccess(policy)

(3)

Listing 2 depicts how we modeled Equation 3 in Alloy.
The TAMPERPROOF predicate checks if an object is located
in isolated memory and all accesses are mediated. The assert
checks that a controller’s policy is tamper proof.

Component Instance Validation (Psw2): Besides the security
policy, the software of key components must not be altered
by an attacker (e.g., Attack B in 1 where the middlebox
was altered [16], [17]). To achieve this, we need to validate
that the correct instance of key components is running. This
includes validating the controller, vSwitch and all middleboxes
(modeled in Listing 3). Where each middlebox instance is the
type and configuration (e.g., rule set) currently specified by
the controller’s security policy. This can be denoted as:

correctInstance(GW ,Controller) ⇐⇒
remoteAttest(Controller) ∧

remoteAttest(vswitch) ∧
∀mboxi , remoteAttest(mboxi)

(4)

We model our implementation of Equation 4 in Listing 3.
The predicate REMOTEATTEST checks that an object has the
correct software and its correctness can be attested. We then
verify this by asserting it for the controller, virtual switch, and
each middlebox.

Control Message Integrity and Authentication (Pcom1): To
protect against control channel attacks (e.g., Attack C in 1)
[22], [23], [53]–[55], we aim to ensure that the control channel
is secure. To achieve this, the control channel needs to be
authenticated and encrypted so that data transmitted over the
channel has not been modified or spoofed (e.g., only the

698

Authorized licensed use limited to: New York University. Downloaded on February 18,2022 at 12:35:36 UTC from IEEE Xplore. Restrictions apply.

Listing 4 Alloy model of message integrity and authentication.
1: pred TRUSTWORTHYCHANNEL(ch : Channel , k : Key)
2: AUTHENTICATEDENCRYPTED(ch)
3: TAMPERPROOF(k)

4: assert SECURECHANNEL(c : Controller , g : Gateway)
5: SAMECHANNEL(c.cntrlChannel , g.cntrlChannel)
6: TRUSTWORTHYCHANNEL(c.cntrlChannel , c.cntrlChannel .key)
7: TRUSTWORTHYCHANNEL(g.cntrlChannel , g.cntrlChannel .key)

Listing 5 Alloy model of packet path and data validation.
1: function GETPATH(pkt : Packet , p : Policy)
2: mbox = GETMBOXFROMPOLICY(p, pkt)
3: path = {vswitch,mbox , vswitch}
4: return path

5: pred AUTHENTICATEHOP(pkt : Packet , h : HopLocation)
6: UNMODIFIEDDATA(pkt)
7: CORRECTHOPLOCATION(h)

8: assert CORRECTPATH(pkt : Packet , path : Path, p : Policy)
9: path.vswitch, path.mbox in GETPATH(p, policy)

10: assert AUTHENTICATEPKTROUTE(pkt : Packet , p : policy)
11: path = GETPATH(pkt , p)
12: CORRECTPATH(pkt , path, p)
13: for hop in path do
14: AUTHENTICATEHOP(p, hop)

controller can send middlebox configuration commands to the
gateway). Meanwhile, the secret keys used by the channel
are isolated and any access is mediated by a trusted entity
(modeled in Listing 4). This can be denoted as:

secureChannel(channel) ⇐⇒
authenticatedEncrypted(channel) ∧

isolatedMemory(keys) ∧mediatedAccess(keys)

(5)

A model of our Alloy implementation of Equation 5 is
shown in Listing 4. The TRUSTWORTHYCHANNEL predicate
checks that the channel (i.e., method being use to send
messages between the controller and the gateway) uses au-
thenticated encryption and that the encryption keys are tamper
proof. The assert then verifies that the channel between the
gateway and the controller uses authenticated encryption and
both hosts protect the encryption keys.

Packet Path and Data Validation (Pcom2): Each packet must
be routed to the correct middlebox as specified by the security
policy. Prior work on internet routing has advocated for per-
hop path authentication to validate that packets followed the
specified path [38], [39]. We aim to provide similar guarantees
in order to detect packets maliciously routed to the wrong
middlebox (e.g., Attack D in 1). In particular, we need to verify
whether the intended path of a packet has been enforced, and
whether packet data has been modified (modeled in Listing 5).
This can be denoted:

authenticateRoute(vswitch,mboxi) ⇐⇒
∀pkt , intendedPath(pkt , policy) = mboxi =⇒
actualPath(pkt) = vswitch → mboxi → vswitch

(6)

TABLE III: Security sub-properties mitigate example at-
tacks.
Attack in Fig. 1 Security Properties Solutions
Attack A Psw1 Limit access to security critical operations
Attack B Psw2 Verify component matches expected
Attack C Pcom1 Blocks control channel injections
Attack D Pcom2 Identifies packet path modification

Listing 5 depicts our Alloy implementation of Equation 6.
The function GETPATH provides the mapping of packets to
the appropriate middlebox, and returns the packet’s sequence
of hops on the gateway. Next, we define the predicate AU-
THENTICATEDHOP which checks to ensure the packet was
not modified and that it arrived a the correct hop location.
We verify that packets being processed by the gateway follow
authenticated routes using the assert statements to ensure the
packet follows the correct path and that the packet is not
modified at each hop location.

A system that provides these properties will by construction
stop the example attacks in §II. As shown in Table III, security
policy isolation and mediation (Psw1) blocks an attacker from
modifying the security policy (Attack A in 1). Component
instance validation (Psw2) enables the architecture to detect
an attacker modifying a middlebox (Attack B in 1). Control
message integrity and authentication (Pcom1) blocks an at-
tacker from being able to inject malicious control messages.
Finally, packet path and data validation (Pcom2) mitigates local
attackers modifying packets (Attack D in 1). Further details
on our formal model can be found in [52].

We envision our architecture supporting additional proper-
ties, but focus on these as fundamental to a trusted architecture.
These fundamental properties can be grouped into: (1) protect-
ing running code (Psw) and (2) protecting communications
(Pcom). Next, we discuss our approach for providing these.

V. SUPPORTING DYNAMIC MIDDLEBOXES

Ideally, the entire codebase on both the control and data
planes could be robustly protected from an attacker. However,
we view this as impractical as it either incurs significant
performance costs (e.g., multiple enclaves to process each
packet) or requires significant reimplementation (e.g., migrat-
ing 100,000+ lines of C/Java). Instead we look to apply fine-
grained security properties to the portions of the codebase
that impact the architecture’s protections, thereby creating a
robustness against our adversary (§IV). Specifically, we apply
periodic, remote attestation to guarantee the code’s integrity
(providing Psw1). This allows the code to run with minimal
performance degradation, while bounding the duration it is
vulnerable to attack. Additionally, critical code (e.g., security
policy) can be protected with a hypervisor extension to isolate
it (providing Psw2) and mediate access to it (providing Psw3).

Periodic, Remote Attestation: IoT security gateways rely
upon a large codebase to provide device-specific protections.
We look to prior work in remote attestation, such as Trusted
Platform Modules (TPM) [56], [57], in order to precisely

799

Authorized licensed use limited to: New York University. Downloaded on February 18,2022 at 12:35:36 UTC from IEEE Xplore. Restrictions apply.

guarantee that the appropriate software stack is running (pro-
viding Psw1). Upon boot, the correct baseline software stack,
composed of the micro-hypervisor, OS, and critical software
components (e.g., controller, vSwitch, middleboxes, etc.) is
verified. Subsequently, new modules that will impact the
provided protections (e.g., a new middlebox’s code prior to
loading) are attested, thereby allowing the architecture to
ensure that the correct protections are instantiated.

During runtime, we periodically re-attest critical modules
(e.g., controller, vSwitch, middleboxes) ensuring an attacker
has not tampered with them. For example, the middlebox code
must be run outside of the hypervisor to enable high packet
throughput. To bound the potential impact of an attacker tam-
pering with this code (i.e., the protection not being applied),
the controller remotely attests critical software components
on the gateway at the end of every epoch, where the epoch
duration can be adjusted to provide a trade-off between the
vulnerable window’s length and the security overhead.

We leverage a virtual trusted platform module (vTPM) on
the micro-hypervisor to provide this attestation capability. A
vTPM is a software implementation of a physical TPM and
provides many of the same capabilities [57]. Specifically, we
leverage its ability to securely store a chain of measurements,
by extending a program control register (PCR), and securely
providing those stored values (i.e., a PCR quote). These two
capabilities enable determining if a software stack on a local
or a remote machine matches a known configuration. These
vTPM measurements can be applied at a fine granularity, with
separate storage for multiple measurements.
Protecting the Controller’s Security Policy: While attesta-
tion can provide significant guarantees about a code’s integrity,
there are some pieces of code that merit further protection
(e.g., code impacting decisions about the protections provided
by the security gateway). Our micro-hypervisor approach
enables selectively isolating this code (Psw2) and requiring that
access to it be mediated by a trusted entity (Psw3). Examples
of such pieces of code are the secret keys used to establish
a secure control channel between the planes and the security
policy on the controller.

As a concrete example, consider the controller’s security
policy. The security policy is critical to ensuring the correct
protections are implemented (e.g., modifying it could result
in the gateway’s middleboxes not protecting the IoT devices).
This code can be extracted from the controller and placed into
memory isolated by the micro-hypervisor (providing Psw2).
Further, access to this memory is mediated by the micro-
hypervisor’s code white-listing (providing Psw3), to ensure
that only the controller’s code can access the security policy.
This combination prohibits an attacker in control of the OS
from accessing and modifying hypervisor protected pieces of
code, without requiring significant changes to existing code.

VI. SECURE AND EFFICIENT COMMUNICATION

Our security architecture requires trust guarantees on both the
control channel (between controller and gateway, Pcom1) and
the data channel (along the gateway’s packet processing path,

Pcom2). We leverage the micro-hypervisor to provide isolation
and mediation to secure these communication channels.

Secure Control Channel: It is crucial that communication
between the control and data plane can be trusted as these
messages often impact the security protections provided by the
gateway. We look to bolster the guarantees provided by tradi-
tional tunneling (e.g., IPsec/TLS) between the controller and
the gateway to ensure a compromised controller or gateway
cannot send spoofed messages over the tunnel (e.g., malicious
middlebox configuration commands). To protect these commu-
nications (Pcom1), we leverage a trusted agent pair running in
the micro-hypervisor to mediate these communications (e.g.,
access the secret keys required to send data over this channel).
There is an agent on the controller and a corresponding agent
on the gateway, which together are responsible for mediating
access to the secure channel.

Secure Data Channel: On the data plane, the security pro-
tections are dependent upon each packet being processed by
the correct middlebox. We can build on prior work on routing
path verification (e.g., control plane [38], data plane [39]), to
provide per-hop guarantees with a low performance overhead.
Specifically, our goal is to guarantee that packets follow the
correct path and are processed by the correct sequence of
middleboxes on the data plane (Pcom2). While traditional
tunnels could be established between each middlebox and
the vSwitch, this would result in significant overhead and
processing delays. To protect the data channel, we propose
leveraging the micro-hypervisor to enforce the correct path
(i.e., middlebox chain) for each packet. We achieve this by
having the micro-hypervisor sign and verify each packet along
its processing path, dropping packets that fail verification. Our
approach differs from prior per-hop authentication proposals
(e.g., [38], [39]) as packets remain on a single host where a
hypervisor can maintain secret keys.

These digital signatures create a connection between the
raw packet data and the middlebox processing the packet,
by the secret key (protected by the micro-hypervisor) shared
between the vSwitch and each middlebox. Furthermore, the
digital signatures can be trusted, as the secret keys are kept
in isolated memory only accessible by the micro-hypervisor’s
mediation, stopping an attacker from forging signed packets.

VII. MODEL EVALUATION

We updated our Alloy model (§IV) to reflect our trusted
architecture and analyze its performance. We probed our
architecture’s model for instances that allow an attacker to
violate our trust property and output a malicious packet (i.e.,
one containing an exploit).

The Alloy Analyzer was unable to identify a counter ex-
ample resulting in our architecture outputing a packet pro-
cessed by an incorrect middlebox. It employs bounded model
checking (BMC), where models are evaluated up to a bound,
N , of each sig in the model. We evaluated our model with
up to a bound of 100 (i.e., 100 instances of each sig)
and noted the resources required to show that this analysis

8100

Authorized licensed use limited to: New York University. Downloaded on February 18,2022 at 12:35:36 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Resources required for Alloy model analysis.
Level of BMC Variables Memory (MB) Time (seconds)
5 18,212 110 0.062
10 81,239 159 0.27
20 430,174 702 1.98
50 4,976,794 4,441 143.63
60 8,276,734 6,034 406.59
100 35,358,494 10,240 5,998.29

could be performed on a personal computer (see Table IV).
Additionally, we systematically removed constraints related to
our security sub-properties (e.g., middlebox software does not
need to be correct) and verified that each resulted in a counter
example where our overarching security property was violated.
This analysis gave us confidence in our our security properties
and architecture’s design.

Our Alloy model aided in identifying nuances and helped
us refine our design. The model highlighted the need to
prohibit packets from completely skipping a middlebox. For
example, if a middlebox signs input and output packets with
the same key it allow a packet to bypass the middlebox
without being detected. Similarly our Alloy model highlighted
software components that either needed to be trusted or be
regularly attested in order to trust the architecture’s operation.
Beyond just the middlebox processing the packet, both the
virtual switch and the controller software need to be trusted
to ensure correct operation.

We noted that our JETFIRE architecture could have applica-
bility beyond the edge IoT security gateway use case and be
used to prevent broader SDN attacks.

VIII. CONCLUSIONS

In this paper, we described our overarching vision for enabling
a trusted IoT security gateway architecture that is practical
and deployable on today’s edge networks. We argued that a
micro-hypervisor based approach provides robust trust prop-
erties while remaining performant and preserving platform
generality. Our preliminary implementation on a Raspberry
Pi 3 has provided encouraging results with acceptable opera-
tional latency. We are currently working on a full end-to-end
implementation and evaluation of our security architecture.

ARCHITECTURE MODEL AVAILABILITY

The Alloy model sources for our trustworthy IoT gateway
security architecture can be found at:

https://github.com/slab14/Gateway Alloy Model

ACKNOWLEDGMENTS

This work was supported in part by NSF award CNS-1564009.
This work was also supported in part by the CONIX Research
Center, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA. This re-
search was also supported by the Carnegie Mellon University
(CMU) Manufacturing Futures Initiative, made possible by the
Richard King Mellon Foundation. This material is based upon
work funded and supported by the Department of Defense
under Contract No. FA8702-15-D-0002 with Carnegie Mellon

University for the operation of the Software Engineering
Institute, a federally funded research and development center
(DM21-0728).

REFERENCES

[1] M. McCormack, A. Vasudevan, G. Liu, S. Echeverrı́a, K. O’Meara,
G. A. Lewis, and V. Sekar, “Towards an architecture for trusted
edge iot security gateways,” in 3rd USENIX Workshop on Hot Topics
in Edge Computing, HotEdge 2020, June 25-26, 2020, I. Ahmad
and M. Zhao, Eds. USENIX Association, 2020. [Online]. Available:
https://www.usenix.org/conference/hotedge20/presentation/mccormack

[2] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for
the internet-of-things,” in Proceedings of the 14th ACM Workshop on
Hot Topics in Networks, 2015, pp. 1–7.

[3] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security
evaluation of home-based iot deployments,” in 2019 IEEE S&P, 2019.

[4] J. Porup, “How hacking team got hacked,” https://arstechnica.
com/information-technology/2016/04/how-hacking-team-got-hacked-
phineas-phisher/, 2016.

[5] P. O’Neill, “Russian hackers are infiltrating companies via the office
printer,” https://www.technologyreview.com/f/614062/russian-hackers-
fancy-bear-strontium-infiltrate-iot-networks-microsoft-report/, 2019.

[6] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in USENIX Security 17.
Vancouver, BC: USENIX Association, 2017.

[7] A. Schiffer, “How a fish tank helped hack a casino,”
https://www.washingtonpost.com/news/innovations/wp/2017/07/21/
how-a-fish-tank-helped-hack-a-casino/, 2017, accessed: 2019-09-23.

[8] R. Ko and J. Mickens, “Deadbolt: Securing iot deployments,” in Pro-
ceedings of the Applied Networking Research Workshop, 2018.

[9] A. K. Simpson et al., “Securing vulnerable home iot devices with an
in-hub security manager,” in 2017 IEEE PerCom Workshops, 2017.

[10] D. Barrera, I. Molloy, and H. Huang, “Standardizing iot network security
policy enforcement,” in DISS 2018, 2018.

[11] “Bit defender box 2,” https://www.bitdefender.com/box/, 2018.
[12] “Rattrap,” https://www.myrattrap.com, 2018, accessed: 2018-03-23.
[13] “Cujo,” https://www.getcujo.com, 2018, accessed: 2018-03-23.
[14] S. Belikovetsky, M. Yampolskiy, J. Toh, J. Gatlin, and

Y. Elovici, “dr0wned – cyber-physical attack with additive
manufacturing,” in 11th USENIX Workshop on Offensive
Technology (WOOT 17). Vancouver, BC: USENIX Association,
2017. [Online]. Available: https://www.usenix.org/conference/woot17/
workshop-program/presentation/belikovetsky

[15] L. Mathews, “Boeing is the latest wannacry ransomware victim,”
https://www.forbes.com/sites/leemathews/2018/03/30/boeing-is-the-
latest-wannacry-ransomware-victim/\#9b1382d66344, 2018.

[16] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “Safebricks: Shield-
ing network functions in the cloud,” in 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18), 2018.

[17] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer,
“Shieldbox: Secure middleboxes using shielded execution,” in Proceed-
ings of the Symposium on SDN Research, 2018, pp. 1–14.

[18] W. Zhang, A. Sharma, K. Joshi, and T. Wood, “Hardware-assisted
isolation in a multi-tenant function-based dataplane,” in Proceedings of
the Symposium on SDN Research, 2018, pp. 1–7.

[19] MITRE, https://nvd.nist.gov/vuln/detail/CVE-2017-5691, 2017.
[20] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page

faults from telling your secrets,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, 2016.

[21] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 640–656.

[22] S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. A. Porras,
“Delta: A security assessment framework for software-defined net-
works.” in NDSS, 2017.

[23] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting
security attacks in software-defined networks.” in NDSS, 2015.

[24] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated bug
removal for software-defined networks,” in 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), 2017.

9101

Authorized licensed use limited to: New York University. Downloaded on February 18,2022 at 12:35:36 UTC from IEEE Xplore. Restrictions apply.

[25] T. D. Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schiavoni, P. Felber, and
D. Hagimont, “Everything you should know about intel sgx performance
on virtualized systems.” POMACS, 2019.

[26] Intel, “Intel software guard extensions: Developer guide,”
https://download.01.org/intel-sgx/linux-1.7/docs/Intel SGX Developer
Guide.pdf, 2016.

[27] N. Weichbrodt, P.-L. Aublin, and R. Kapitza, “sgx-perf: A performance
analysis tool for intel sgx enclaves,” in Proceedings of the 19th Inter-
national Middleware Conference, 2018, pp. 201–213.

[28] S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “Panoply: Low-tcb linux
applications with sgx enclaves.” in NDSS, 2017.

[29] A. Vasudevan, “The uber extensible micro-hypervisor framework
(uberxmhf),” in Practical Security Properties on Commodity Computing
Platforms. Springer, 2019, pp. 37–71.

[30] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta,
“Design, implementation and verification of an extensible and modular
hypervisor framework,” in 2013 IEEE S&P, 2013.

[31] M. Ammar, B. Crispo, B. Jacobs, D. Hughes, and W. Daniels,
“Sµv - the security microvisor: A formally-verified software-based
security architecture for the internet of things,” IEEE Trans.
Dependable Sec. Comput., vol. 16, no. 5, 2019. [Online]. Available:
https://doi.org/10.1109/TDSC.2019.2928541

[32] A. Vasudevan and S. Chaki, “Have your pi and eat it too: Practical
security on a low-cost ubiquitous computing platform,” in 2018 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2018.

[33] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,
T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai et al., “Bitvisor:
a thin hypervisor for enforcing i/o device security,” in Proceedings of
the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments, 2009.

[34] H. Tews, T. Weber, M. Völp, E. Poll, M. van Eekelen, and P. van
Rossum, “Nova micro–hypervisor verification,” CTIT technical report
series, 2008.

[35] T. Yu, S. K. Fayaz, M. P. Collins, V. Sekar, and S. Seshan, “Psi: Precise
security instrumentation for enterprise networks.” in NDSS, 2017.

[36] P. Oester, “Linux kernel memory subsystem copy on write mechanism
contains a race condition vulnerability,” https://www.kb.cert.org/vuls/id/
243144/, 2016, accessed: 14 February 2020.

[37] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu, “From
collision to exploitation: Unleashing use-after-free vulnerabilities in
linux kernel,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015, pp. 414–425.

[38] M. Lepinski and K. Sriram, “Bgpsec protocol specification,” Draft-ietf-
sidr-bgpsecprotocol, 2013.

[39] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and
A. Seehra, “Verifying and enforcing network paths with icing,” in
Proceedings of the Seventh COnference on Emerging Networking
EXperiments and Technologies, ser. CoNEXT ’11. New York, NY,
USA: Association for Computing Machinery, 2011. [Online]. Available:
https://doi.org/10.1145/2079296.2079326

[40] N. Doraswamy and D. Harkins, IPSec: the new security standard for
the Internet, intranets, and virtual private networks. Prentice Hall
Professional, 2003.

[41] P. A. Porras, S. Cheung, M. W. Fong, K. Skinner, and V. Yegneswaran,
“Securing the software defined network control layer.” in NDSS, 2015.

[42] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A robust, secure, and high-
performance network operating system,” in Proceedings of the 2014
ACM CCS, 2014.

[43] E. Lear, R. Droms, and D. Romascanu, “Manufacturer usage description
specification,” IETF draft, 2017.

[44] V. Roth, W. Polak, E. Rieffel, and T. Turner, “Simple and effective
defense against evil twin access points,” in Proceedings of the First
ACM Conference on Wireless Network Security, ser. WiSec ’08. New
York, NY, USA: Association for Computing Machinery, 2008, p.
220–235. [Online]. Available: https://doi.org/10.1145/1352533.1352569

[45] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology ePrint
Archive, vol. 2016, no. 086, pp. 1–118, 2016.

[46] J. M. Rushby and B. Randell, “A distributed secure system,” in 1983
IEEE Symposium on Security and Privacy, April 1983, pp. 127–127.

[47] J. M. McCune et al., “Trustvisor: Efficient TCB reduction and attesta-
tion,” in IEEE S&P, 2010.

[48] X. Hu and Z. M. Mao, “Accurate real-time identification of ip prefix
hijacking,” in 2007 IEEE Symposium on Security and Privacy (SP ’07),
2007, pp. 3–17.

[49] X. Shi, Y. Xiang, Z. Wang, X. Yin, and J. Wu, “Detecting prefix
hijackings in the internet with argus,” in Proceedings of the 2012
Internet Measurement Conference, ser. IMC ’12. New York, NY,
USA: Association for Computing Machinery, 2012, p. 15–28. [Online].
Available: https://doi.org/10.1145/2398776.2398779

[50] A. Shostack, “Experiences threat modeling at microsoft.” Workshop on
modeling security (ModSec), 2008.

[51] D. Jackson, “Alloy: A new technology for software modelling,” in
Tools and Algorithms for the Construction and Analysis of Systems,
J.-P. Katoen and P. Stevens, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 20–20.

[52] “Jetfire code,” https://github.com/slab14/Gateway Alloy Model, 2020.
[53] C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras,

and G. Gu, “Flow wars: Systemizing the attack surface and defenses
in software-defined networks,” IEEE/ACM Transactions on Networking,
vol. 25, no. 6, pp. 3514–3530, 2017.

[54] H. Wang, G. Yang, P. Chinprutthiwong, L. Xu, Y. Zhang, and G. Gu,
“Towards fine-grained network security forensics and diagnosis in the
sdn era,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 3–16.
[Online]. Available: https://doi.org/10.1145/3243734.3243749

[55] F. Xiao, J. Zhang, J. Huang, G. Gu, D. Wu, and P. Liu, “Unexpected data
dependency creation and chaining: A new attack to sdn,” in 2020 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2020, pp. 1512–1526. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00017

[56] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote
attestation,” International Journal of Information Security, 2011.

[57] W. Arthur, D. Challener, and K. Goldman, A Practical Guide to TPM
2.0: Using the New Trusted Platform Module in the New Age of
Security. Berkeley, CA: Apress, 2015, ch. History of the TPM, pp.
1–5. [Online]. Available: https://doi.org/10.1007/978-1-4302-6584-9 1

10102

Authorized licensed use limited to: New York University. Downloaded on February 18,2022 at 12:35:36 UTC from IEEE Xplore. Restrictions apply.

