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ABSTRACT

This paper introduces PPT, a pragmatic transport that achieves

comparable performance to proactive transports while maintaining

good deployability as reactive transports. Our key idea is to run a

low-priority control loop to leverage the available bandwidth left by

the reactive transports. The main challenge is to send just enough

packets to improve performance without harming the primary

control loop. We combine two unconventional techniques: an in-

termittent loop initialization and an exponential window decrease,

enabling us to dynamically identify and fill the spare bandwidth.We

further complement PPT’s design with a buffer-aware flow sched-

uling scheme to optimize the average FCT of small flows without

prior knowledge of flow size information. We have implemented

a PPT prototype in the Linux kernel with ∼400 lines of code and

demonstrated that compared to Homa, it delivers up to 46.3% lower

overall average FCT and even 25%/55.5% lower average/tail FCT of

small flows in an Memcached workload.
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1 INTRODUCTION

With the link speed growing from 1/10G to 100G and beyond,

many datacenter network (DCN) transport protocols have been pro-

posed to provide ultra-low latency for applications. These protocols
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can be divided into two categories. One is reactive transport (e.g.,

DCTCP [5], TIMELY [29]) that usually starts from a small initial

window and then iteratively ramps up to the right rate. Another is

proactive transport (e.g., NDP [15], ExpressPass [11], Homa [32],

Aeolus [17]), which allocates bottleneck link bandwidth as credits

to senders who can then send packets at optimal rates.

Despite many of them, current solutions either exhibit low per-

formance or bring practical issues (§2.1). On the one hand, reactive

transports are cautiously designed and are hard to reach the right

rate in each round, thus leading to under-utilized networks. On the

other hand, proactive transports may be promising for delivering

high performance but are hard to deploy because (i) they require a

non-trivial amount of labor to re-implement their transports in the

Linux kernel and even significant code modifications to applica-

tions; (ii) they assume a prior knowledge of flow size for scheduling,

which is unavailable in practice.

In this work, we aim to explore a new transport that can achieve

comparable performance to proactive transports while being readily

deployable. We start with the reactive transports to leverage their

broad deployment advantage and ask whether it is possible to address

the performance issues arising from their reactive nature.

Answering this question requires first addressing the under-

utilization issue of current reactive transport. Indeed, our prelimi-

nary experiments reveal that if the spare bandwidth can be ideally

utilized at each round, DCTCP even achieves a ∼33% lower overall

average flow completion time (FCT) than Homa [32] (§2.3). While

promising, realizing such idealized utilization encounters two con-

crete challenges. How do we quickly detect when DCTCP does not

use the available bandwidth? How to gracefully use the available

bandwidth without harming the primary DCTCP traffic.

One plausible way could run the low-priority loop proposed by

prior work RC3 [30] in parallel with the normal DCTCP loop to

utilize the spare bandwidth. Unfortunately, RC3 lets the low-priority

control loop fill up the entire BDP (bandwidth-delay product) for

every RTT, thus occupying too much switch buffer and affecting

the injection of normal packets. As a result, it may even perform

worse than the original DCTCP, with the average FCT of small

flows prolonged by 1.87× in some workload (§6).

We address these challenges with PPT, a pragmatic DCN trans-

port that aims to retain the deployability advantages of DCTCP

while enabling it to efficiently utilize the available bandwidth to

optimize FCTs. PPT relies on two parallel control loops: one high-

priority control loop (HCP) transmitting normal DCTCP packets

and a second low-priority control loop (LCP) transmitting oppor-

tunistic packets to fill the pipe.
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HCP is exactly DCTCP, while LCP is based on a key insight

that filling the gap of the congestion window to the historical

observed maximum value for each flow in each round could help to

gracefully utilize the spare bandwidth left over by DCTCP (§2.3). To

this end, LCP exploits two unusual techniques. First, it employs an

intermittent loop initializing mechanism (§3.1) to identify the spare

network capacity, which initializes an LCP loop when a flow starts

or exhibits the lowest queue occupation in its HCP loop. Second, it

revolves around an exponential window decreasing (EWD) strategy

(§3.2) to ensure the opportunistic packet transmissions can utilize

the spare bandwidth gracefully, i.e., without causing bandwidth

waste and bursting normal HCP packets.

This dual-loop rate control design is effective for three reasons.

First, it intermittently initializes and terminates LCP to match the

dynamically emerged spare bandwidth left by HCP. Second, with

the EWD strategy, LCP ensures its window plus the current HCP’s

one does not exceed the maximum window for each flow in every

RTT. Third, it uses ECN for LCP loop to make it sense congestion

and decrease the sending rate early before buffer overflow, so as

to protect normal HCP packets. These make PPT efficiently utilize

the available bandwidth and hence reduce overall FCTs.

Despite being effective, the dual-loop rate control treats small

and large flows equally in the network. Thus, the packets of small

flows may be queued after those of large flows in the switch buffer.

So, we must also tackle concerns about the average FCT of small

flows. Indeed, flow scheduling is effective for this due to its use

of in-network priorities. Nevertheless, designing an effective flow

scheduling scheme while retaining PPT’s pragmatic merit needs to

overcome one critical challenge: How do we schedule flows without

prior knowledge of flow size and without affecting the benefits of

the dual-loop rate control on overall FCT reduction?

To address this challenge, we present a buffer-aware flow sched-

uling scheme (§4). It first exploits a flow identification approach

to identify large flows by monitoring the data size copied into the

TCP send buffer through the first system call. Then, it uses a mirror-

symmetric packet tagging method to assign priorities. Precisely, it

evenly divides the available priorities into a high-priority part for

HCP and a low-priority part for LCP. Each part assigns its lowest

priority to identified large flows, and gives the highest priority

to non-identified flows in the beginning and then gradually de-

creases their priorities as they send more data. Through this way,

PPT ensures that small flows can bypass queued packets of most

large flows in the network from the start of transmission, while

guaranteeing HCP will not get harmed by LCP.

We have implemented a PPT prototype that requires only end-

host implementation (§5). Specifically, we implement the LCP con-

trol logic and the scheduling process as Linux kernel modules that

sit within the TCP/IP layers. Further, we make minimal modifica-

tions to the kernel source code to avoid LCP impacting HCP. While

the implementation digs shallowly into the kernel code, it does not

impact PPT’s compatibility with legacy TCP/IP network stacks.

We further built a small-scale testbed in the CloudLab cluster,

together with large-scale trace-driven simulations at 40/100Gbps,

to evaluate the performance of PPT (§6). We have the following

key findings:

• Compared to the reactive transport—RC3 [30], PPT reduces the

overall average FCT and the average/tail FCT of small flows by

up to 92.7% and 99.2%/99.9%, respectively. Moreover, the perfor-

mance advantage of PPT over RC3 still holds even when we limit

the available switch buffer for RC3’s low-priority queues.

• PPT achieves lower overall average FCT than the proactive trans-

ports, NDP [15], Aeolus [17], and Homa [32], under both oversub-

scribed and non-oversubscribed topologies. Compared to Homa,

it reduces the overall average FCT by up to 46.3% and even shows

a 25%/55.5% lower average/tail FCT of small flows in an Mem-

cached workload.

• PPT’s design components are effective for the performance, and

it is robust to parameter settings like TCP send buffer and ECN

marking threshold. Moreover, PPT can also outperform PIAS [9]

and HPCC [25] and its design can be integrated with delay-based

transport.

2 BACKGROUND AND MOTIVATION

2.1 Drawbacks of Existing Transports

We first provide a detailed motivation of our work by highlighting

the drawbacks of existing transports (see Table 1).

Limitations of reactive transports: Reactive transports are es-

sentially sender-driven and most of them can work with commodity

switches and retain compatibility with TCP/IP stacks, yet without

any modifications to applications. However, they fall short in utiliz-

ing spare bandwidth or optimizing FCTs. For example, solutions like

DCTCP [5] and PIAS [9] are TCP-style transports that may waste

bandwidth in the slow-start stage. TCP-10 [12] and Halfback [23]

try to utilize spare bandwidth in the startup phase by increasing

the initial window to 10 or pacing out <141KB small flows in 1st
RTT while ignoring those in the queue buildup phase. RC3 [30]

uses a second control loop to utilize the spare bandwidth left by the

primary TCP loop; however, it sends too excessive packets and ad-

versely impacts the performance. HPCC [25] can gracefully utilize

spare bandwidth but require precise INT feedback from switches.

In summary, reactive transports except PIAS [9] mainly perform

rate control while do not take advantage of in-network priorities.

Limitations of proactive transports: Another line of work at-

tempts to re-architect reactive TCP-style transports by proactively

allocate bottleneck link bandwidth, known as proactive transports.

They typically allocate bandwidth as credits to active senders who

then can send at right rates. Nevertheless, they have the following

shortcomings. First, they suffer from a pre-credit dilemma. Meaning,

their senders either passively hold packets before receiving credits

(e.g., [11, 15]), causing under-utilization in the 1st RTT, or aggres-

sively injecting packets at line rate for all flows during pre-credit

phase (e.g., [17, 32]), causing bursting. Second, some of them like

Homa [32] and Aeolus [17] assume a prior knowledge of flow size

for scheduling. Third, they require refactoring the TCP/IP stack to

implement their transport logic. For example, Homa-Linux [33] in-

volves ∼10k lines of code for many redesigned network subsystems

or even 42.2% of the application code to be modified (appendix C).

2.2 Desirable DCN Transport Properties

To take a leap forward and design a pragmatic datacenter transport,

we list 3 key desirable properties:
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Schemes

Efficiency Practicality

Spare bandwidth

utilizing pattern

Scheduling

without flow size

Working with

commodity switches

Compatible with

TCP/IP stacks

Non-intrusion

to applications

Reactive

DCTCP [5] Passive × Yes Yes Yes

TCP-10 [12] Passive × Yes Yes Yes

Halfback [23] Passive × Yes Yes Yes

RC3 [30] Aggressive × Yes Yes Yes

PIAS [9] Passive Yes Yes Yes Yes

HPCC [25] Graceful (but INT required) × No No (for RoCE) Yes

Proactive

Homa [32] Aggressive No (flow size required) Yes No No

Aeolus [17] Aggressive No (flow size required) Yes No No

ExpressPass [11] Passive (1st RTT wasted) × Yes No No

NDP [15] Passive (1st RTT wasted) × No No No

PPT Graceful Yes Yes Yes Yes

× denotes the relevant schemes focus only on controlling flow sending rates, while do not use in-network priorities for flow scheduling.

Table 1: Summary of prior transports in literature and comparison to PPT.
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Figure 1: Link utilization of DCTCP under 0.5 load.

Utilizing spare bandwidth gracefully: Modern applications like

large-scale deep learning on GPU, storage on NVMe, have driven

the datacenter link speed to grow from 1Gbps to 100Gbps and

beyond. Hence, it is important to fully utilize available bandwidth

in every single RTT. Meaning, the transport solution should sent

just enough packets to gracefully utilize the spare bandwidth.

Scheduling flows without flow size: Another application re-

quirement is low latency, especially for very short flows (≤1KB)

that dominate a high volume in the workload. Flow scheduling is

effective for achieving low latency, which uses in-network priori-

ties to prioritize small flows over large ones. A pragmatic transport

should integrate this technique to effectively schedule flows in a

real-world setting where flow size is not known a prior [9].

Being readily-deployable: Finally, a pragmatic transport solu-

tion must work with existing commodity switches and should be

backward compatible with legacy TCP/IP network stacks. From the

perspective of usability, the transport must also incur no modifica-

tions to application code.

2.3 The Design Space

PPT starts with the reactive transport DCTCP to leverage its prac-

tical advantages while remedying its inefficiencies in utilizing the

spare bandwidth and optimizing FCTs.

DCTCP is a good start. DCTCP [5], though proposed more than

10 years ago, is an appropriate fit for starting a pragmatic transport

design for two reasons. First, DCTCP is widely adopted in industry

[19, 35] and has been integrated into various OS kernels [2, 3]. Sec-

ond, it requires no switch modification and is application-friendly.

Despite this, DCTCP still leaves a significant performance gap.

The key culprit is under-utilization. In DCTCP, spare band-

width emerges in two cases. The first one is in the first few RTTs. A

new DCTCP flow starts with a small initial window and usually

takes several RTTs to ramp up the congestion window to reach the

maximum rate [12] [26]. Another case is in the queue buildup phase.

To show this point, we run an ns-3 simulation with two senders

and one receiver. The bottleneck link capacity is 40Gpbs. The ECN

marking threshold is 120KB. Flows are generated based on the Web

Search workload [34] and follow Poisson arrival process. We sample

the bottleneck link utilization every 100us for 10ms when DCTCP

enters a steady state. As we set the network load to 0.5, the ideal

link utilization should be maintained at 50%. However, as we can

see from Fig. 1, the link utilization achieved by DCTCP fluctuates

between 25% and 50% at most of the time.

Remarks: The intuitive reasons are as follows. DCTCP marks ECN

at the switch for arriving packets if queue occupancy exceeds a

threshold 𝐾 , and the sender cuts the window based on the fraction

of ECN marked ACKs. So, when queue buildup forms, there are

generally two statuses for the active flows. First, multiple flows

are marked with ECN and cut their windows simultaneously, thus

causing a sudden drain on the switch buffer. This is why the link

utilization in Fig. 1 can drop to 25% in a specific time, leaving half of

the bandwidth under-utilized. Second, only one flow perceives this

congestion while others are still probing their maximum congestion

window. Therefore, when this flow cuts its window, the buffer

occupancy may drain to a relatively low value. In this case, there

is also some spare bandwidth, thus making the link utilization fall

below 50% at most of the time.

Filling the gap of DCTCP sounds good. To show the potential

value of filling DCTCP’s gap, we consider a hypothetical DCTCP. It

was constructed in the following. We first run the default DCTCP

and record each flow’s maximum window (MW). Then, we run the

hypothetical DCTCP that sends just enough opportunistic packets

to fill the gap to MW for each flow in each RTT. We simulate a leaf-

spine topology consisting of 144 servers, 9 leaf switches and 4 spine

switches, with the edge and core links being operated at 40Gbps

and 100Gbps, respectively. The flows are generated following an

all-to-all traffic pattern, again with the Web Search [34] workload,

at 0.5 network load. The results are shown in Fig. 2. We observe that

the hypothetical DCTCP reduces the overall average FCT by 33%1

and 40%, compared to Homa and NDP, respectively. The reason

is that the hypothetical DCTCP sends just enough opportunistic

packets to utilize the leftover bandwidth. In contrast, both Homa

1The hypothetical DCTCP does not contain flow scheduling component, thus its
improvement over Homa is smaller than that of PPT (§6.2).
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and NDP send unscheduled data packets at line rate in the pre-

credit phase (i.e., the phase before receiving credits), thus incurring

too many unnecessary packet losses and retransmissions.

Filling the gap to MW is a good choice. Filling fewer oppor-

tunistic packets wastes link capacity, while filling too many impacts

normal DCTCP packet transmissions. We advocate filling the gap to

the MW for each flow. To showwhy this works, we run a simulation

with the same topology as above and use a Data Mining workload

[13]. The network load is 0.6. We use different window sizes to be

filled by the opportunistic packets, varying from 50% to 150% of

the MW. Fig. 3 shows the results. We have two findings. First, if

the window value that needs to be filled is smaller than MW (e.g.,

50%×MW), the performance degrades a lot (e.g., 56% higher FCT).

Second, if this value is larger than MW, the sender sends a burst

of opportunistic packets in each round, resulting in a significantly

high loss rate, with the FCT increased by up to 6×. As a result, we

consider filling the gap to 1×MW is a good choice.

Scheduling flows with in-network priorities is a must.While

filling the gap of DCTCP could reduce overall FCTs, small flow’s FCT

optimization is missing. An effective way is to schedule flows with

in-network priorities, e.g., assigning higher priorities for small flows

to bypass queued packets of large flows in the network. However,

we need to address two issues. First, how to differentiate large flows

from small ones on the premise that flow size is not known a prior?

Second, how to prioritize small flows while incurring no penalty on

overall FCTs or even without starving large flows. For the first issue,

PIAS [9] uses bytes sent to differentiate large flows gradually, but it

is too late to isolate small flows from large ones. QCLIMB [24] uses

learned lower bounds for differentiating flows from the beginning

of transmission but requires a daunting machine learning model.

Our design advocates a buffer-aware approach to differentiate a

majority (86.7% as revealed in §4.1) of large flows at the beginning

of transmission and differentiate the remaining during transmission

with a flow-aging idea like PIAS [9]. For the second issue, we take a

mirror-symmetric packet tagging method to prioritize small flows

over large ones (§4.2).

Putting it all together. PPT is a software only transport solution

running within end-hosts that requires no modifications to exist-

ing NICs, switches and even applications. It mainly contains the

following two components (Fig. 4):

• Dual-loop rate control2 (§3): PPT has a high-priority control

loop (HCP) and a low-priority control loop (LCP). HCP uses

the default DCTCP congestion control algorithm [5] to transmit

normal packets. LCP revolves around HCP and aims to send

2Note that in the Internet context other than DCN, PCC Protues [28] is the closest
work to PPT, which uses the traffic of low-priority applications to fill the bandwidth
leftover by high-priority applications. However, PPT uses different bandwidth padding
scheme. That said, it uses the opportunistic packets starting from the end of the same
flow to fill the spare bandwidth. Moreover, PCC Protues [28] requires application to
specify its priorities, while PPT gradually demotes a flow’s priority as more bytes sent.

user
High-priority 

rate control loop

Low-priority rate 
control loop

Mirror-
symmetric 

packet
tagging

Buffer-aware 
flow 

identification
APP NIC

kernel

Figure 4: PPT overview.

opportunistic packets to gracefully utilize the spare bandwidth

left by the primary HCP loop.

• Buffer-aware flow scheduling (§4): To achieve the lowest pos-

sible latency, PPT integrates a flow scheduling component with

the dual-loop rate control. It first uses a buffer-aware approach

to identify large flows. Then, it leverages a mirror-symmetric

packet tagging method to prioritize small flows over large ones

in each rate control loop.

We want to highlight that PPT’s two components work organically.

When a flow starts, it first goes through the dual-loop rate control,

where the HCP sends normal packets in order from the first byte

in the send buffer while LCP sends opportunistic packets from

the very last byte. This flow will further go through the buffer-

aware flow scheduling component, where its normal packets use

the first four high priorities while the opportunistic packets use

the remaining four low priories (see §4.2 for the details of priority

tagging). So, PPT is not simply dividing the traffic into multiple

classes and coupling flows with different classes or priorities to

utilize the spare bandwidth. Instead, it divides each flow into two

parts and uses the low-priority part to fill the bandwidth left by the

high-priority part.

3 DUAL-LOOP RATE CONTROL

Fig. 5 illustrates the dual-loop rate control logic of PPT. As we can

see from this figure, HCP is simply the same with DCTCP [5]; thus,

we omit its details. LCP sends opportunistic packets from the tail

end with the following two techniques:

• Intermittent loop initialization (§3.1): Because of the window

dynamics nature in DCTCP, the spare capacity left by the HCP

loop appears intermittently. Whenever this occurs, PPT opens

an LCP loop and calculates an appropriate initial window for

opportunistic packet transmissions.

• Exponential window decreasing (§3.2): In each LCP loop, PPT

introduces a novel exponential window decreasing mechanism,

which ensures, in every RTT, the window summation of LCP and

HCP will not exceed the MW a flow experienced in the past. As

such, LCP can gracefully utilize the spare bandwidth left by HCP.

Remarks: RC3 [30] also uses low-priority control loop to fill the

spare bandwidth left by TCP-like transport. However, we want to

highlight that PPT is designed with radically different LCP rate

control, in terms of when, how and what. First, PPT intermittently

detects when the spare bandwidth appears and initializes or termi-

nates the LCP accordingly, while RC3 keeps the LCP loop opened

until it crosses with HCP loop’s traffic. Second, PPT uses ECN for

LCP loop to make it sense congestion early and decreases the send-

ing rate to not affect HCP loop, while RC3 makes no effort to protect

HCP loop’s transmission. Third, PPT uses the EWD window de-

creasing strategy to send a suitable amount of opportunistic packets

in every RTT to gracefully utilize the spare bandwidth without in-

curring buffer overflow. Worse still, RC3 uses in-network priorities
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only for prioritizing HCP traffic, making no attempt to prioritize

small flows over large ones (i.e., lacking flow scheduling). These

make RC3 shows worse performance as compared to PPT (see §6).

3.1 Intermittent Loop Initialization.

Typically, for a DCTCP flow, its congestion window size exponen-

tially increases in the beginning and then exhibits a well-known

“sawtooth” behavior. Meaning, the spare bandwidth left by HCP

appears intermittently and mainly in the following two cases.

Case 1: spare bandwidth in the first few RTTs.

Since HCP uses DCTCP, a new flow typically needs to go through

the slow-start and congestion-avoidance phases, which are the

common features in TCP and take multiple RTTs to ramp-up to the

maximum window (MW). So, before the flow’s window reaches the

MW, there exists significant spare capacity left over by HCP.

Case 2: spare bandwidth in queue build-up phase.

After the startup phase, a DCTCP flow’s congestion window ex-

hibits a sawtooth behavior. During this period, the queue length

grows until packets are dropped, similarly evolving in the sawtooth

pattern. Specifically, when the queue size exceeds the marking

threshold 𝐾 , the sources will receive ECN marks in one RTT later

and cut their windows accordingly to lower the queue length.When

multiple concurrent flows cut windows simultaneously, the queue

length may decrease to a very low value or even zero, thus leaving

some spare bandwidth either.

Note that the rise of high-speed DCN and the heavy-tailed dis-

tribution of DCN workload enable many small flows to complete

within the first RTT [17]. When every new flow opens an LCP loop

directly at its start, large flows will compete for bandwidth in the

1st RTT, thus adversely affecting small flows’ FCTs. To mitigate

such impact, PPT, in case 1, will only open LCP loops directly in

the 1st RTT for normal flows but delay the LCP loop initialization

to the 2nd RTT for those identified as large by the buffer-aware

approach (§3). For spare bandwidth emerging in case 2, PPT will

directly open an LCP loop for each flow.

The remaining task is to decide an initial congestion window for

each LCP loop, as detailed below.

LCP loop initialization in case 1: Ideally, the initial window of

the LCP is determined by the spare bandwidth left by the HCP.

However, in case 1, it is hard to know how much spare bandwidth

is left since the DCTCP flow itself is in the start-up phase to probe

the available bandwidth in the network. Therefore, in this case, we

set the initial congestion window 𝐼 for the opportunistic packet
in the LCP loop to the bandwidth-delay product (BDP) minus the

initial window of the relevant DCTCP flow.

LCP loop initialization in case 2: The spare bandwidth in case

2 is closely related to the queue length dynamics. Meanwhile, we

observe that the evolving trend of the queue length can be expressed

by DCTCP parameters. More precisely, DCTCP uses a parameter 𝛼
at the sender to estimate the fraction of packets that are marked

with ECN, which is updated every RTT as follows:

𝛼 ← (1 − 𝑔) × 𝛼 + 𝑔 × 𝐹 (1)
where 𝐹 represents the ratio of ECN marked packets in the past

window of data, and 0 < 𝑔 < 1 is a weight factor used to emphasize

how much weight 𝐹 should be given when estimating 𝛼 . Note that
the DCTCP sender receives ECN marks for every packet when the

queue length exceeds the marking threshold 𝐾 and does not receive

any marks when the queue length is below 𝐾 .
Essentially, 𝛼 provides the relation between the queue size and

marking threshold 𝐾 – with 𝛼 close to 0 and 1 indicating low and

high levels of congestion, respectively. A key implication behind

the definition of 𝛼 is that the smaller the parameter 𝛼 , the higher
the probability that the network has spare capacity. Therefore, after

a flow is over the startup phase in HCP loop, PPT initializes an

loop for it whenever its DCTCP parameter 𝛼 takes the minimum

value 𝛼𝑚𝑖𝑛 in the past RTTs. Also, the initial congestion window is

calculated as follows:

𝐼 =
( 1
2
− 𝛼𝑚𝑖𝑛

)
·𝑊𝑚𝑎𝑥 (2)

Here, the term 𝑊𝑚𝑎𝑥 is the maximum value of the congestion

windows3 the flow experienced in past RTTs. The rationales for

Equation (2) are two-fold. First, the larger the 𝛼𝑚𝑖𝑛 , the less vol-

ume of opportunistic packets should be injected into the network,

thus the smaller initial window 𝐼 should be configured. Second,
because DCTCP will cut its window by half at most when conges-

tion is perceived, Equation (2) ensures that the initial window of

opportunistic packets is at most half of the MW.

3.2 Exponential Window Decreasing

As mentioned in §3.1, the spare bandwidth left by the HCP loop

appears in two cases. In case 1, the new flow first goes through

the slow-start phase and enters the congestion-avoidance phase

to increase the window additively. In case 2, the flow just reacts

to severe congestion and starts to additively increase its window

again. In both cases, the spare bandwidth keeps decreasing. Hence,

we let the LCP loop to exponentially decrease its congestion win-

dow, to gracefully utilize the spare bandwidth. To this end, we cut

the sending rate of opportunistic packets by half every RTT. This

way can smoothly utilize the spare bandwidth, without impacting

normal packet transmission, while avoiding underutilization.

We combine the sender and receiver to enforce this EWD strategy.

At the beginning of an LCP loop, the sender paces the initial sending

rate of opportunistic packets to the initial window divided by RTT,

i.e., 𝐼/𝑅𝑇𝑇 . Each opportunistic packet enters the low-priority queue
in the switch port and will be marked with ECN if buffer occupancy

is greater than a predefined threshold (will discuss later) upon its

arrival. LCP rate control is implemented on the receiver side. In

3Note that when two large flows arrive one after the other and share a common
bottleneck link, the latter flow may record a lower value of𝑊𝑚𝑎𝑥 and thus send fewer
opportunistic packets via LCP than the earlier one. This is indeed an unfair issue,
but it may not matter much. This is because only the congestion windows after the
congestion-avoidance phase are considered for computing𝑊𝑚𝑎𝑥 .

958



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lide Suo et al.

particular, whenever two consecutive opportunistic data packets

arrive at the receiver, the receiver sends one low-priority ACK back

to the sender. Upon receiving a low-priority ACK, the sender sends

an opportunistic data packet. Since receivers only generate one

low-priority ACK for receiving two opportunistic packets, ideally,

the sending rate of opportunistic packets is naturally cut by half

after every single RTT.

Remarks:We now highlight two remarks about the design. First,

PPT uses the ECN marking to enforce the LCP loop’s opportunistic

packets not to impact the HCP loop’s normal packets. If a low-

priority ECN-marked ACK arrives at the sender, it indicates two

possible situations. The first situation is that normal packets block

opportunistic ones. If LCP keeps the sending rate of opportunistic

packets, it will increase the queuing delay or even packet loss.

The second situation is that opportunistic packets impact normal

packets. Though we isolate them into different priority queues, all

data packets essentially share the switch buffer. So, when the sender

receives a low-priority ECN-marked ACK, it ignores this ACK and

does not trigger new opportunistic packet, to preserve the normal

packet transmission. Second, each LCP loop will not last forever.

Our design will terminate the current LCP loop if the sender has

not received low-priority ACKs for 2 RTTs and start to discover

spare bandwidth again to initialize a new LCP loop.

ECN-marking threshold: The choice of ECNmarking threshold is

important as it directly affects the tradeoff between throughput and

latency [5, 39, 40]. As the most instantaneous ECN-based datacenter

congestion control algorithms [5, 10, 39, 40] suggested, we re-use

the RED marking scheme implemented commodity switches and

simply set both the low and high thresholds to the same value 𝐾 .
The ideal marking threshold 𝐾 is calculated as follows:

𝐾 = 𝜆 ·𝐶 · 𝑅𝑇𝑇 (3)

where 𝐶 and 𝑅𝑇𝑇 are the link speed and the base round-trip time,

respectively, and we assume they are fixed values of the network.

So, the marking threshold 𝐾 is only changing with parameter 𝜆.
For the high-priority queue, 𝜆 is chosen as the same as the

DCTCP paper (0.17 in theory [31]). For the low-priority queue,

if the value of 𝐾 is too large, the opportunistic packets may be

queued, thus hurting normal packets. Meanwhile, a too-small value

of 𝐾 may lead to the premature marking of opportunistic packets

and leave spare bandwidth underutilized. Considering this tradeoff,

PPT sets a slightly smaller 𝜆 (i.e., 0.1 by default in this paper) for the
low-priority queue. We also show in §6.3 that PPT has performance

benefits under a wide range of 𝜆 for the low-priority queue.

4 BUFFER-AWARE FLOW SCHEDULING

4.1 Buffer-aware Flow Identification

A flow’s data is first generated by an application. Then, the applica-

tion invokes system call functions to copy the data into send buffer

in the OS kernel. Finally, the NIC transmits the data from the send

buffer into the network.

Wemainly consider the typical case where network transmission

rate is smaller than the data generation rate4, and the data that

4When transmission rate is larger than or equal to date generation rate, very little data
will be backlogged in the send buffer. In this case, network is not the bottleneck for the
application and any transport design would be to paint the lily. So, we ignore this case
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Figure 6: Illustration of mirror-symmetric packet tagging

(Note here P0>P1· · · >P7).

cannot immediately get transmitted to the network will be queued

in TCP send buffer. This has two possibilities. First, if the send buffer

room is not enough, the application’s data copy process will be

blocked, thus pushing buffer pressure back to application. Second,

if there are adequate send buffer, data copy will not get blocked

and data will be buffered in send buffer.

Based on the analysis above, we are motivated to configure a

relatively large TCP send buffer to enable as much as possible data

stored in the send buffer. In this way, we can have a chance to

differentiate large flows. That said, we can check the send buffer

in the OS kernel at the start of each flow and identify a flow as a

large one if its first system call injects an amount of data exceeding

a given threshold into the send buffer.

To validate the effectiveness of this method, we run two appli-

cations, Memcached and Web Server, using two hosts connected

via a 25Gbps network. For both applications, we use one host as

client and another one as server. The Memcached application uses

the ETC trace of the paper [8], while the web server application

follows the Youtube HTTP trace [18]. We set the TCP send buffer

to the default value—16KB, which is large enough for both appli-

cations. The base RTT is 100𝜇s. The identification threshold is set
to 1KB and 10KB, for the Memcached and web server applications,

respectively. We observe that for the Memcached application, there

are 4098 >1KB flows, and the buffer-aware approach can accurately
identify 86.7% of them as >1KB via monitoring the amount of data
injected into the send buffer by the first system call. For the web

server application, the accuracy of identifying >10KB flows can

also reach 84.3%.

Note here, the buffer-aware approach may still leave some por-

tion of unidentified large flows. For these flows, PPT fall-back to

PIAS [9] and gradually identify them in transmission stages. Pre-

cisely, it uses the bytes sent to estimate its pending data. The more

bytes a flow transferred, the more likely it could be a large flow,

and accordingly the lower priority it would get in the network.

4.2 Mirror-symmetric Packet Tagging

Packet tagging is performed at end-hosts, which inserts a priority

value in each packet’s header. With these tags, switches can use

strict priority queuing to dequeue packets. To be effective for PPT’s

design, it should assign higher priorities for flows with fewer bytes

to reduce the average FCT of small flows, while not affecting large

flows and not making HCP traffic harmed by LCP.

as it is not the norm in datacenters with modern bandwidth-intensive applications
like distributed machine learning and cloud storage [38].
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Hence, we use a mirror-symmetric packet tagging method. As

shown in Fig 6, it divides the priorities into two parts. The first high-

priority part (i.e., P0∼P3) is used for HCP traffic, while the second

low-priority part (i.e., P4∼P7) is for LCP traffic. Each part uses the

same mechanism to assign priorities, where the flows identified

as large by the buffer-aware approach use the last lowest priority,

and the unidentified flows use the remaining three high priorities.

Thad said, if a flow is identified as a large one, the sender allocates

the lowest priority P3 in the first part to its HCP packets and the

lowest priority P7 in the second part to the LCP packets. Otherwise,

the flow’s HCP and LCP packets will be tagged with P0 and P4,

respectively. As more bytes are sent, the HCP and LCP packets will

be tagged at the same pace with decreasing priorities P𝑖 and P𝑖+4
(1 ≤ 𝑖 ≤ 3), respectively.

4.3 Why this Works

The effectiveness of buffer-aware scheduling is two-fold. First, its

buffer-aware approach can identify most large flows, enabling the

packet tagging method to assign large flows with lower priorities

from the start of transmission and reducing the risk of small and

large flows coexisting in high priority levels. Second, it separates

the HCP and LCP traffic into different priorities. This not only

ensures LCP will not harm HCP but also guarantees large flows

will not get starved (as the HCP packets of identified large flows

have higher priority than the LCP packets of unidentified flows).

Therefore, our PPT can achieve lower overall average FCTs than

the state-of-the-art transport—Homa [32] (§6).

For small flows, PPT can achieve comparable or even better

performance than Homa, because Homa blindly transmits unsched-

uled packets at line rate in the 1st RTT. But this depends on the

workloads. For workloads entirely composed of small flows (e.g.,

Memcached workload [4]), most flows can be totally sent out in the

1st RTT. This could increase network load unpredictably and cause

burst or even packet losses, making Homa achieve higher FCTs of

small flows than PPT. For workloads with polarized flow sizes, e.g.,

data mining [13] containing both tiny flows (<1KB) and massive
flows (<100MB), Homa will not be affected too much by the 1st RTT
issue and is slightly better than PPT for small flow performance.

For typical heavy-tailed workloads like web search [34] with more

diversified flow sizes, PPT achieves comparable performance with

Homa for small flows.

5 IMPLEMENTATION

We have implemented the PPT prototype as an extension to the

Linux Kernel 3.18.1 with ∼400 lines of code. Our implementation

sits within the TCP/IP layer. As shown in Fig. 7, we make minimal

modifications to the kernel network stack to implement the PPT

control logic. Because we do not touch the core congestion control

code, PPT is architecturally compatible with legacy TCP/IP stacks.

Note that PPT only needs to configure ECN marking and strict

priority queuing (SP) at switch side, which are standard features in

all existing commodity switches.

5.1 Sender

In the original Linux kernel, the sending pipeline starts data trans-

missions when an application calls the send() function. Then, it

Userspace
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dev_xmit_skb()

dctcp_get_info()

TCP (DCTCP)PPT Control Logic

tcp_send_loops()

tcp_transmit_skb()

NIC

opportunistic, ACK
(low priority)

normal
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Flow 
Identificationtcp_sendmsg()

(a) Packet sending pipeline

dctcp_update_alpha()tcp_ack_loops()

tcp_data_queue()

tcp_recv_established()

Read Priority in DSCP

netif_receive_skb()

recv()Userspace

TCP/IP Layer

NIC

TCP (DCTCP)PPT Control Logic

opportunistic, ACK
(low priority)

normal
(high priority)

(b) Packet receiving pipeline

Figure 7: PPT Linux kernel implementation.

copies the application’s data from userspace to the kernel send

buffer; later on, it invokes the tcp_sendmsg() function to segment

the buffered data into packets represented by socket buffer (skb)

data structure. Here, each skb represents one packet. The skbs will

first go through the core TCP logic and then be delivered to the NIC

device queue for transmission via the dev_queue_xmit() function.

PPT extends the sender-side code in the kernel networking stack

mainly by adding a new function called tcp_send_loops().

Flow identification:We identify a flow by its 5-tuple: src/dst IPs,

src/dst ports, and protocol id. We construct a data structuremsg_iov

in tcp_sendmsg(), where the msg_iov->iov_len field records the first

system call size. If this field’s value is larger than a given threshold,

we identify the flow as large. We also use the msg_iov structure to

store the bytes sent for the follow-up packet tagging.

LCP loop invoking:We use tcp_send_loops() to invoke the LCP

loop once the data has been segmented into skbs by tcp_sendmsg().

Specifically, the tcp_send_loops() function reads the TCPwrite queue

from the tail end to send opportunistic packets. For normal DCTCP

packet sending, it still goes through the existing tcp_push() kernel

function, which reads from the first byte of the TCP write queue. In

the tcp_send_loops() function, we also need to do rate control and

mark packet priority.

Rate control: In tcp_send_loops(), we only implement the inter-

mittent loop initializing mechanism for PPT’s LCP control logic to

determine an initial window for opportunistic packets. For exponen-

tial window decreasing, we leave it to tcp_ack_loops() and receiver

control (as will be introduced in §5.2). For new flows, the initial

window is BDP. For active flows, we invoke the dctcp_get_info()

function to acquire the runtime parameter 𝛼 in DCTCP; we also

use the sock structure to store the minimal 𝛼 in the past few RTTs,

with which we can calculate the initial window.

Priority tagging: We set the skb→priority field to 4∼7 for LCP

packet and 0 ∼ 3 for HCP packet, based on the packet tagging

loic in §4.2. After the priority assignment, we forward out the skb

packets via the tcp_transmit_skb() function. Here, in the IP layer, we

use the ip_queue_xmit() function to copy the value of skb→priority

to the DSCP priority bits in the IP header, such that the network

switches and receivers can classify different types of packets.

In summary, our changes in the sender-side code are lightweight

and isolated with the core congestion control logic. Thus, we can

easily make other TCP-like congestion control algorithms to run

along with our PPT.
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5.2 Receiver

Receiving data packets:We make the following changes for the

data packet receiving pipeline. First, when each packet is read in

off the wire and converted to skb in the IP layer, we copy the DSCP

priority filed in the IP header to the skb→priority field. Second,

in the TCP layer, we identify different types of packets according

to their skb→priority fields via the tcp_recv_established() function.

Third, we isolate the low-priority and high-priority packets into

different control logic to ensure the standard TCP ACKing mecha-

nism and other variables remain unaffected. On the one hand, the

high-priority packets go through the default DCTCP control logic

and return ACKs as usual. On the other hand, when receiving two

consecutive opportunistic data packets, we send an ACK packet

back to the sender at low priority. This ACK carries the cumulative

acknowledge sequence and SACK tags to indicate which oppor-

tunistic packet is received. Note here, PPT requires SACK to be

enabled. Further, if any packet is out-of-order, irrespective of the

priority, it will be temporarily stored in an out_of_order_queue via

the unmodified function tcp_data_queue(); it will be forwarded up

to application layer buffer after the missing packets arrive.

Receiving ACKs:When receiving a window-sized of high-priority

ACKs, we invoke the dctcp_update_alpha() function to update the

runtime parameter 𝛼 in DCTCP. For receiving a low-priority ACK,

we add a new function tcp_ack_loops() to handle it, which contains

two basic operations. The first one implements the exponential

decreasing mechanism (§3.2). Specifically, if the low-priority ACK is

not marked with ECE flag, we send a new opportunistic packet from

the last byte of send buffer; otherwise, we do nothing. The second

one invokes the unmodified function tcp_sacktag_write_queue() to

update the SACK scoreboard, which records the bytes that have

been SACKed.

Typically, the received ACK is at a value less than snd_nxt which

is the sequence number of the last byte of all normal packets. How-

ever, in case the DCTCP sender has crossed paths with the LCP

loop’s traffic, the receiver gets in-order opportunistic packets and

returns the ACK carrying a sequence number (i.e., the first byte

of all opportunistic packets) larger than snd_nxt. To allow TCP to

continue as usual in this case, we tweak the ACK processing by

advancing the send queue’s head and updating the snd_nxt with

the new ACK’s value.

In summary, though digging shallowly into the kernel code, our

implementation is lightweight and does not touch the core TCP

code; thus, it does not impact the compatibility of PPT with legacy

TCP/IP stacks.

6 EVALUATION

We evaluate our PPT through a combination of testbed experiments

and large-scale simulations and show that:

• PPT achieves lower FCTs in practice (§6.1).

• PPT works well in large datacenters (§6.2).

• PPT’s design components are effective (§6.3).

6.1 Testbed Experiments

Setup: We build a testbed in the CloudLab cluster, which contains

15 hosts connected to a Dell-s4048 switch. Each host is equipped

with a 20-core CPU (Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz),

Short flows

(0-100KB)

Large flows

(>100KB)
Overall

average size

Web Search 62% 38% 1.6MB

Data Mining 83% 17% 7.41MB

Table 2: Flow size distributions of realistic workloads.

64G memory, and a 10G NIC (Mellonax CX4). The switch runs Dell

networking OS with 50MB memory shared by 54 ports. The base

RTT is roughly 80𝜇𝑠 . We enable SACK and set the 𝑅𝑇𝑂𝑚𝑖𝑛 to 10𝑚𝑠 ,
which is a reasonable setting in DCN environment [5]. We provide a

summary of the parameter settings for testbed experiments. Please

see Table 3 in appendix A.

Workloads:We use two widely adopted realistic DCN workloads5:

web search [34] and data mining [13]. As shown in Table 2, both

workloads are heavy-tailed. We generate the traffic by randomly

starting flows following the Poisson process and control the interval

arrival time of flows to achieve the desired network load. Using

these two workloads, we construct a 15-to-15 (§6.1.1) and a 14-to-1

(§6.1.2) traffic patterns to evaluate our PPT.

Comparisons:We compare PPT with DCTCP [5], Homa [32] and

RC3 [30] in testbed experiments. For Homa, we use its Linux im-

plementation [33] (denoted as Homa-Linux hereafter) and set the

RTTbytes to 50KB6. Also, as recommended by Homa paper [32], we

configure the degree of overcommitment to the number of sched-

uled priority levels (i.e., 2). We set the ECN marking threshold

to 100KB for DCTCP. For RC3, we set the send buffer to its rec-

ommended value—2GB. Note that RC3 is originally designed for

Internet and uses TCP for high-priority loop by default. To make

a fair comparison in DCN environment, we use DCTCP for RC3’s

high priority control loop. For our PPT, we set the send buffer to

128KB, but it works well under a wide range of send buffer settings

(see §6.3 for more details).

6.1.1 15-to-15 Traffic Pattern.

We construct a 15-to-15 traffic pattern to evaluate our PPT. The

results are shown in Fig. 8 and Fig. 9, which present the overall

average FCT, the average/tail FCT of (0, 100KB] small flows, and

the average FCT of (100KB,∞) large flows, under the web search

and data mining workloads, respectively. From these figures, we

make the following observations.

Overall FCT performance: PPT achieves the best performance in

the overall average FCT for both workloads. Specifically, compared

to Homa-Linux, RC3, and DCTCP, PPT reduces the overall average

FCT by up to 79.7%, 82.3%, and 98.1%, respectively, for the web

search workload and 28.9%, 17.6%, and 96%, respectively, for the

data mining workload. These results verify the effectiveness of PPT

in utilizing the available bandwidth in the network.

Small flow’s performance: PPT achieves significantly better

performance for small flows than RC3 and DCTCP. PPT delivers

86.8%∼97.4%/95.8%∼99.8% and 71.1%∼99.1%/93.6% ∼99.1% lower

average/tail FCT of small flows, respectively, than RC3 and DCTCP,

across all tested settings. The poor performance of RC3 and DCTCP

5In certain experiments (§6.2), we also use a tiny workload—Facebook memcached that
is entirely composed of ≤100KB small flows and was also used in the Homa paper [32].
6Note that the 50KB RTTbytes are higher than the 10KB RTTbytes in the original
Homa paper [32]. This is because the original Homa is implemented based on DPDK
and has extremely lower base RTT (roughly 8𝜇𝑠).
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Figure 8: [15-to-15] FCT results under the web search workload.
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Figure 9: [15-to-15] FCT results under the data mining workload.
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Figure 10: [14-to-1] FCTs under web search workload.

is because they lack efficient scheme to gracefully utilize the avail-

able bandwidth in the network and do not take advantage of in-

network priorities for scheduling. We further find that PPT per-

forms better than Homa-Linux in small flow performance for both

workloads. Compared to Homa-Linux, PPT reduces small flows’

average/tail FCT by up to 84.5%/96.8% for the web search workload

and 74.3%/95.1% for the data mining workload.

Remarks: Readers may question that PPT performs better than Homa-

Linux in the data mining workload, which contradicts the claimant

in §4.3. This is mainly because of the inefficient implementation of

the Homa-Linux network stack. First, it uses the GRO function to

group multiple messages/flows into a batch. This will significantly

increase the latency of small flows under the data mining workload

with polarized flow sizes. Second, Homa-Linux implementation can

only detect packet loss using timeout events and does not support ad-

vanced mechanisms like duplicated ACKs and SACK. These indirectly

demonstrate that refactoring the TCP/IP network stack to implement

a complete new one in the Linux kernel is not an easy task.

Large flow’s performance: PPT’s performance improvements in

small flows will not penalize (100KB,∞) large flows. Specifically, we

observe that PPT delivers the best performance for large flows, with

the reduction in the average FCT of large flows over Homa-Linux,

RC3, and DCTCP being up to 80.2%, 80.3%, 98.1%, respectively.

These results indirectly demonstrate that PPT can well utilize the

available bandwidth in the network and its scheduling design will

not let large flows get starved.

6.1.2 14-to-1 Traffic Pattern.

We further use the 15 hosts in our testbed to construct a 14-to-1

incast traffic pattern. In particular, we run the client application on

one host to periodically send requests to the other fourteen hosts
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Figure 11: [14-to-1] FCTs under data mining workload.

that run server applications and respond with requested data fol-

lowing the distributions of web search and data mining workloads.

We choose a moderate 0.5 network load for this experiment. The

results are shown in Fig.10 and Fig.11.

Overall FCT performance: Under the 14-to-1 traffic pattern, PPT

still delivers the lowest overall average FCT among all schemes.

Compared to Homa-Linux, RC3 and DCTCP, it reduces the average

FCT of all flows by 74.8%, 92.7% and 95.5% for the web search

workload and 32%, 23.4% and 94% for the data mining workload.

The reason why PPT shows lower overall FCTs in incast scenarios is

as follows. First, PPT’s intermittent loop initialization design could

accurately match the spare bandwidth’s emergence. As a result,

PPT will not send a burst of opportunistic packets and cause severe

congestion as Homa-Linux and RC3 did. Second, even if congestion

arises in LCP, PPT can quickly recover and fall back to DCTCP by

suspending opportunistic packet transmission with EWD and ECN.

Small flow’s performance: PPT also achieves lower FCTs for the

small flows. Compared to RC3 and DCTCP, it reduces the aver-

age/tail FCT of small flows by 99.2%/99.9% and 99.3%/99.2%, respec-

tively, for the web search workload. For the data mining workload,

its reduction in the average/tail FCT over these two schemes also

reaches 94.7%/99.3% and 84.9%/99.3%. Note here, RC3 even per-

forms worse than DCTCP in some cases. This is because RC3 sends

too many low-priority opportunistic packets to utilize the spare

bandwidth, which causes severe packet losses in such many-to-one

incast scenarios and, in turn, harms the high-priority packet trans-

mission. Compared to Homa-Linux, PPT reduces the average/tail

FCT of small flows by 72.9%/88.7% and 80.2/98% under the web

search and data mining workloads, respectively.

Large flow’s performance: Under the 14-to-1 incast scenario, PPT

will not penalize large flow’s performance. Specifically, compared

962



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lide Suo et al.

0

20

40

60
37.67

15.27
8.737.927.624.69FC

T
(m

s)

AeolusNDPPPT Homa
RC3 DCTCP

(a) Overall avg.

0.0

1.0

2.0
1.31

1.03

0.210.270.230.20FC
T

(m
s)

(b) Small avg.

0.0

1.0

2.0
1.411.26

0.480.530.500.34FC
T

(m
s)

(c) Small tail

0

50

100

150
104.21

40.25
19.1216.3429.39

9.54FC
T

(m
s)

(d) Large avg.

Figure 12: [Simulation] FCT results under web search workload.
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Figure 13: [Simulation] FCT results under data mining workload.

to Homa-Linux, RC3 and DCTCP, PPT reduces the average FCT of

large flows by up to 75.9%, 82.2%, and 95.1%, respectively, across

the two workloads.

6.2 Large-scale Simulations

Comparisons: In addition to DCTCP, RC3 and Homa, we also

compare PPT with two recent proactive transports: NDP [15] and

Aeolus [17] (integrated with Homa by default).

Settings:We simulate a 1.4:1 oversubscribed topology and use all-

to-all traffic patterns. This topology consists of 144 servers, 9 leaf

switches and 4 spine switches, with the host and core links operated

at 40 and 100Gbps, respectively. Unless otherwise specified, we use

0.5 load. We configure a per-port buffer of 120KB at the switches.

For DCTCP, we set its ECN marking threshold to 96KB. For RC3,

we set the send buffer to its recommended value—2GB. For PPT,

we configure its send buffer to 2GB to keep consistent with RC3,

but it can work well under smaller send buffer sizes (see §6.3). We

set the ECN marking thresholds for PPT’s HCP and LCP loops to

96KB and 86KB, respectively. Homa’s simulations use an infinite

switch buffer and lack a loss recovery mechanism. So, we use Aeo-

lus’s simulator with a timeout-based loss recovery mechanism to

evaluate Homa. We set RTTbytes to 45KB for Homa and Aeolus to

match our 40/100G topology, and the degree of overcommitment is

2. For NDP, we use the simulator provided by the authors with their

recommended configurations. We also use the web search [34] and

data mining [13] workloads.

Fig. 12 and Fig. 13 show the overall average FCT, average/tail FCT

of (≤ 100KB) small flows, and the average FCT of (> 100KB) large

flows for the web search and data mining workloads, respectively.

Overall FCT performance: PPT achieves the lowest average FCT

of all flows. Compared to NDP, Aeolus, Homa, RC3, and DCTCP,

PPT reduces the overall average FCT by 38.5%, 40.8%, 46.3%, 69.3%,

and 87.5%, respectively, for the web search workload and 47.1%,

47.1%, 45.3%, 67.8%, and 67.4%, respectively for the data mining

workload. The improvement of PPT over DCTCP is due to its use of

LCP loop to efficiently utilize the available bandwidth. The reasons

why PPT performs better than other schemes are that PPT can

gracefully utilize the spare bandwidth without causing bandwidth

waste like NDP or sending opportunistic packets too aggressively,

like Aeolus, Homa, and RC3.

Small flow performance: For (0, 100KB] small flows, we find

that PPT significantly outperforms RC3 and DCTCP, with the im-

provement in the average/tail of small flows by up to 80.1%/76.8%
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Figure 14: [Simulation] PPT works well with a delay-based

transport conceptually equivalent to Swift [21].

and 84.7%/75.9%, respectively, across the workloads. Note that RC3

even performs worse than DCTCP under the data mining work-

load. This is because it sends too excess low-priority packets in

each RTT, crippling its desirable property in utilizing the spare

bandwidth left by DCTCP. We further observe that compared to

NDP, Homa, and Aeolus, PPT delivers comparable average FCT of

small flows with them but maintains 32%, 35.8%, and 29.2% lower

tail FCTs, respectively, for the web search workload. For the data

mining workload, PPT is better than Aeolus but worse than Homa

by 6.3%/54.5% in the average/tail FCT of small flows and worse

than NDP by 45.5% in the tail FCT of small flows. This is because

the data mining workload has polarized flow sizes, making Homa’s

aggressive and NDP’s passive transmissions in the 1st RTT less

likely to cause bursty. Whereas, Aeolus sends unscheduled packets

at line rate but drops them immediately once bandwidth is used up,

thus leading to small flows still exhibiting degraded performance.

Large flow performance: For large flows, we observe that PPT

achieves the best performance, with the reduction in the average

FCT of large flows over NDP, Aeolus, Homa, RC3 and DCTCP being

up to 67.5%, 65.8%, 50.1%, 76.3%, and 90.8%, respectively. These

results verify that PPT can achieve its design goal and bring no

penalties on large flows.

Working with delay-based transport: PPT is designed around

DCTCP. We now investigate if PPT’s design can be used as a build-

ing block for other reactive transports. To this end, we use the ns-3

simulator to implement a variant of PPT on top of a delay-based

transport (conceptually equivalent7 to Swift [21]). Specifically, this

variant starts an LCP loop whenever a flow’s transmission delay

falls below the target delay and closes it when it does not receive

ACKs for two consecutive RTTs. Moreover, this variant uses the

same flow scheduling method as PPT. Fig 14 compares the FCT sta-

tistics of this variant with those of the original delay-based transport

7Since the ns-3 simulator cannot accurately simulate the host congestion, it uses the
same window adjustment algorithm as Swift [21] but adjusts the congestion window
only based on the fabric delay.
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w.o. EWD

4685

203 341

6330

597 699

Overall avg. Small avg. Small tail
0

1000

5000

6000

7000

FC
T

(u
s)

PPT
PPT w.o. flow scheduling
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w.o. scheduling

4685

203
341

4569

212

501

Overall avg. Small avg. Small tail
0

1000

5000

FC
T

(u
s)

PPT
PPT w.o. flow identification

Figure 18: [Simulation] PPT

w.o. identification

under web search workload at 0.5 load. We find that when incor-

porating PPT’s design with the original delay-based transport, the

overall average FCT, the average/tail FCT of small flows, and the

average FCT of large flows can be reduced by 16.7%, 56.5%/72.1%,

and 11%, respectively. These results show that PPT works well with

delay-based transport. We have also discussed PPT’s compatibility

with other transports. Please see appendix B.

Comparisons with other schemes:We also compare PPT with

other schemes and the results showe that PPT outperforms RC3

even when limiting the available buffer for low-priority queues of

RC3 and also performs better than PIAS [9] and HPCC [25] (see

appendix D for more details).

6.3 PPT Deep Dive

6.3.1 Effectiveness of PPT’s Design Components.

Effect of ECN for LCP loop: PPT enables ECN to control LCP

loop to not affect HCP. To show its effect, we conduct an ns-3

simulation with the web search workload at 0.5 load using the same

40/100G topology as in 6.2. Figure. 15 shows the results. As we can

see, without ECN, PPT’s LCP loop may perceive congestion after

packet loss, thus aggressively injecting LCP packets and harming

HCP packet transmissions. As a result, the overall average FCT and

the average/tail FCT of small flows achieved by PPT can be slowed

down by 18.9%, 59.6%/78.4%, without ECN for the LCP loop.

Effect of EWD: We further investigate the effectiveness of PPT’s

EWD design. We construct a PPT variant that does not use EWD

and instead sends opportunistic packets at line rate once the LCP

loop is opened. We use the same topology and workload as above.

The results are shown in Figure 16. We find that PPT’s performance

significantly decreases when we disable EWD for it, with the overall

average and the average/tail of small flows prolonged by 26% and

63.5%/85.8%, respectively. This demonstrates that the EWD design

can contribute effectively to PPT’s performance.

Effect of flow scheduling: PPT uses buffer-aware flow scheduling

to assign higher priorities for flows with fewer bytes. To show its

effect, we construct another variant of PPT that assigns packets

with the same priorities. Similarly, we use the same topology and

workload as above and show the results in Fig. 17. We find that

compared to this variant, the original PPT can reduce the overall
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Figure 19: [Testbed] Comparison of kernel datapath process-

ing overhead under web search workload.
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Figure 20: Link utilization under web search workload [34]

at 0.5 load (ideal utilization is 50%).

average FCT and average/tail FCT of the small flows by 26% and

66%/51.2%, respectively. This verifies the effectiveness of PPT’s flow

scheduling component.

Effect of flow identification: PPT’s flow scheduling relies on

a buffer-aware identification approach to identify large flows. To

evaluate if this can benefit PPT’s performance, we construct a PPT

variant that turns off this approach and considers all flows non-

identified. Fig. 18 compares the FCT statistics achieved by this

variant and the original PPT for the web search workload under

load 0.5. We have two findings. First, this variant delivers a slighter

lower overall average FCT than PPT. This is because large flows in

this variant have higher priorities than the original PPT. Second, the

original PPT outperforms this variant in small flow performance,

with the average/tail FCT of small flows reduced by 4.3%/31.9%.

This is expected because, under this variant, both large and small

flows will be initially mapped to the highest priority queue and

gradually demoted to lower-priority ones, thus making large flows

compete for bandwidth with small ones.

Overhead: Readers may question whether PPT incurs high CPU

overhead. To answer this question, we measure the kernel space

CPU overhead of PPT and DCTCP in the our testbed under the web

search workload. Fig. 19 shows the client-side and server-side CPU

overhead for PPT and DCTCP. In all cases, we observe that PPT

only incurs a slightly higher CPU usage than DCTCP. The largest

gap between their CPU usage is less than 1%. On a closer analysis,

we find that the average gap between the CPU usage of PPT and

DCTCP decreases on both client and server as the load increases.

This is because, compared to DCTCP, the increased overhead from

PPT is caused by the low-priority opportunistic packet transmission,

while a larger load leads to less spare bandwidth and, thus lower

overhead gap.

Effect of spare bandwidth utilizing: PPT aims to utilize the spare

bandwidth of DCTCP. We run an ns-3 simulation with the same

setting as that for Fig. 1 to quantify this point. We compare the

link utilization of PPT with DCTCP and the hypothetical DCTCP

(as described in §2.3). Again, the load is set to 0.5, and an ideal

link utilization should be 50%. Fig. 20 shows the link utilization

achieved by different schemes. We find that PPT achieves almost

the same link utilization as the hypothetical DCTCP; that said, both
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Figure 21: [Simulation] FCT results with an Memcached

workload (where all flows are less than 100KB).
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Figure 22: [100/400G topology] FCT results under web search

workload.

maintain the utilization around 50%. However, DCTCP can drop to

25% utilization, resulting in up to 1.8× lower utilization than our

PPT. Moreover, the average utilization in the steady state achieved

by PPT is 15% higher than that of DCTCP.

6.3.2 Handling Some Extreme Cases.

Working with tiny workload: We further evaluate PPT under

an Memcached workload from Facebook, which is exactly the W1

workload used in Homa [32]. In this workload, more than 70% of

flows are less than 1000bytes, and all flows are less than 100KB.

Fig. 21 depicts the FCT statistics of different schemes under the

same topology as above with this memcached workload at 0.5

load. We find that PPT achieves the best performance, with the

average/tail FCT reduced by at least 25%/55.6%, compared to all the

other tested schemes. PPT can utilize available bandwidth gracefully

and schedule flows with in-network priorities, thus performing

better than DCTCP and RC3. The reason why the remaining three

proactive transports perform worse than PPT stems from the fact

that this Memcached workload is composed of small flows. So, not

sending data in the first RTT like NDP will cause bandwidth waste,

while sending data at line rate like Homa and Aeolus will lead to

bursty; both cases bring slowdown for small flows.

Working with 100/400G topology:We further evaluate PPT in

higher line rates. We still use the two-tier topology as in §6.2 but

the host and core links are operated at 100Gpbs and 400Gbps, re-

spectively. Fig.22 shows the FCT results of different schemes under

the web search workload at 0.5 load. We have the following find-

ings. First, compared to NDP, Aeolus, Homa, RC3, and DCTCP, PPT

reduces the overall average FCT by 43.5%, 56%, 42.8%, 59.1%, and

84.2%, respectively, and also reduces the average FCT of large flows

by 66%, 8.1%, 46.4%, 62.3%, and 84.3%, respectively. Second, PPT

achieves 16.7%, 23.1%, 63%, and 78% lower average FCT of small

flows than NDP, Aeolus, RC3, and DCTCP, respectively. Third, PPT

delivers higher tail FCTs of small flows than Homa and Aeolus.

The key reason is that a higher line rate leads to a higher value of

BDP. This means that small flows could inject more opportunistic

packets into the network via the LCP loop, thus making small flows

in PPT being more likely to suffer from higher tail FCT.
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Figure 23: [Incast] Overall average FCT with varying incast

ratio (RC3 is not included as it cannot sustain heavy incast).

Working with highly bursty workloads:We study the behavior

of PPT under highly bursty scenario, where we construct 𝑁 -to-1
incast traffic pattern in the above oversubscribed topology (𝑁=
32, 64, 128 and 256). We compare PPT with NDP, Homa, Aeolus

and DCTCP. Note here RC3 is not included as it cannot sustain

heavy incast. All flows are generated according to the Web Search

workload at 0.6 network load.We choose N senders randomly across

all servers, and one server as the receiver. Fig. 23 shows the average

FCT of all flows. We make two observations. First, PPT achieves

similar performance with DCTCP. This is expected because PPT

aims to utilize the spare bandwidth in the first few RTTs and queue

buildup phase. However, in heavy incast scenario, the maximum

window size would be very small for each flow, thus leaving little

spare bandwidth in the first few RTTs. Further, the high priority

traffic almost saturate the switch buffer under heavy incast, leaving

little space for low priority opportunistic packets. As a result, PTT

will fall back to DCTCP and can hardly make further improvement.

Second, PPT can achieve better performance than Homa and Aeolus

while similar performance with NDP. This is because PPT uses ECN

to quickly stop low priority packet transmission, while NDP cuts

payload and reserves packet headers, to maintain low queuing delay

for normal packet transmission. In contrast, Homa blindly transmits

a BDP amount of data for each new flow in the 1st RTT, which

would cause sporadic traffic spikes, non-trivial queuing delay and

eventually packet losses under heavy incast. Aeolus de-prioritizes

first-RTT unscheduled packets and sends them at line-rate, which

could be dropped once bandwidth is used up. Though these lost

unscheduled packets will not trigger retransmisions, they lead to

bandwidth waste and degrade the overall FCTs as well.

Working with non-oversubscribed topology: PPT also behaves

well under non-oversubscribed topology (see appendix E).

6.3.3 Sensitivity Analysis.

PPT works well under different send buffer sizes and ECN marking

thresholds. Due to the page limit, we move the results to appendix F.

7 CONCLUSION

PPT is a pragmatic DCN transport that uses a dual-loop rate control

design to gracefully utilize the available bandwidth and further

complements its design with a buffer-aware flow scheduling to

optimize small flow’s performance. We have implemented a PPT

prototype using commodity hardware, and evaluated it through

small-scale testbed experiments and large-scale simulations. Exten-

sive evaluations show that PPT is a viable solution that achieves

our design goals. This work does not raise any ethical issues.
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Parameter Setting

Switch buffer size 50MB

Switch port number 54

RTT 80𝜇s
𝑅𝑇𝑂𝑚𝑖𝑛 10ms

RTTbytes for Homa 50KB

Overcommitment degree for Homa 2

DCTCP’s ECN threshold Default: 100KB

HCP’s ECN threshold Default: 100KB

LCP’s ECN threshold Default: 80KB

Identification threshold Default: 100KB

Table 3: Testbed parameters.

APPENDIX

Appendices are supportingmaterial that has not been peer-reviewed.

A PARAMETER SETTING IN TESTBED

Tabe 3 summarizes the parameter settings in our testbed experi-

ments.

B DISCUSSION

Compatible with other transports: PPT is based on ECN-style

transport—DCTCP, and we have also shown that PPT can be in-

tegrated into delay-based transport (appendix E). Actually, PPT’s

design may also be used as a building block for INT-based trans-

port like HPCC [25]. For example, one may open a PPT’s LCP

loop to send low-priority opportunistic packets whenever HPCC’s

estimated in-flight bytes are smaller than BDP and use PPT’s buffer-

aware scheduling to prioritize small flows over large ones for lower

FCTs. For proactive transport like Homa [32], no available signal

can be used to identify the congestion status in the network core.

So, one may have no idea when to start PPT’s LCP loop, and accord-

ingly, integrating PPT’s design with proactive transport remains

an interesting open problem.

Portability issue: PPT is implemented in the Linux Kernel and is

easy to deploy. Albeit this, we envision that it suffers from portabil-

ity issues, which means that porting PPT to a different OS Kernel

vision will require additional engineering effort. One possible way

to tackle this problem is to implement PPT in a kernel-bypass man-

ner, i.e., restoring eBPF [27] and XDP [16]. In practice, the only

technical challenge is to guarantee the feasibility of controlling op-

portunistic packets, but this could involve the cooperation between

kernel-bypass manners and the network stack.

C OTHER RELATEDWORK

We have discussed the closely related work extensively in this paper.

Here, we only provide some more points about the proactive trans-

ports and some other ideas that have not been discussed elsewhere.

For proactive transport like Homa [32], there are kernel-based

implementations, such as Homa/Linux [33]. However, this needs

to implement many network subsystems such as GRO/GSO and

state/memory management, incurring ∼10k lines of code (see Ta-

ble 4). Even though this can be done, some network systems (e.g.,

TSO [42] and LRO [14]) are not compatible. Worse still, one must

significantly change the application’s code to use Homa/Linux [33].

We dissect the code organization of a distributed key-value store

Module Lines of Code Percentages

User API 1900 15%

Transport control 2800 22%

GRO/GSO 400 3.1%

State management 700 5.5%

Memory management 300 2.4%

Timeout retransmission 300 2.4%

Other 6300 49.6%

Table 4: Lines of code for Homa/Linux stack.

Modules Lines of Code Modified?

Socket 2080 Y

HTTP package header processing 1516 N

RPC 975 Y

RAFT consensus protocol 1365 N

Coroutine synchronization 145 N

IO 393 Y

Other 1694 N

Table 5: Lines of code to be changed for a key-value store

application to run on Homa/Linux stack.
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Figure 24: [Simulation] RC3 still performs worse than PPT

even when limiting the available buffer for its low-priority

queues.
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Figure 25: [Simulation] FCT results across different flow

types achieved by HPCC, PIAS and PPT.

application built with the RAFT consensus protocol [1]. Table 5 lists

the modules in this application and their lines of code required to

be modified for using Homa/Linux [33]. We find that three modules

(i.e., socket, RPC, and IO) must be modified, which requires 3448

lines of code, accounting for 42.2% of the entire application code.

There are other efforts that improve the performance of DCN,

such as load balancing (e.g., CONGA [7], Flowlet [37]), and TCP/IP

acceleration (e.g., StackMap [41], TAS [20]). These designs may

work orthogonally with PPT to further improve the performance.

There are some other reactive transports (e.g., HULL [6], D2TCP

[36], DX [22], DCQCN [43], TIMELY [29], Swift [21]) that have not

been discussed. These transports generally require multiple rounds

to converge to the correct rate, and lack efficient flow scheduling

scheme to optimize small flow’s performance.

D COMPARISONS WITH OTHER SCHEMES

Comparisons with RC3 variant: Readers may question if RC3

would still perform poorly if we limit the switch buffer that its low-

priority queues could use. To verify this point, we vary the buffer

for RC3’s low priority traffic from 20% to 80% of the switch buffer,

and run a simulation to compare its FCT results with those of PPT in

Fig. 24. We find that PPT significantly outperforms RC3 regardless
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Figure 26: [Non-oversubscribed topology] FCT results under

the web search workload.

of the available buffer for RC3’s low-priority traffic. Compared to

RC3 across all shown cases, PPT reduces the overall average FCT

and the average/tail FCT of small flows by up to 71% and 73%/75%,

respectively. The reason is that RC3 makes no attempt to protect

high-priority traffic and lets the low-priority loop keep sending

opportunistic packets until it crosses with the primary control

loop. So, when limiting the available buffer for RC3’s low-priority

queues, the vast majority of opportunistic packets will be dropped,

and RC3’s low-priority loop may quickly close, thus showing little

effect on utilizing spare bandwidth.

Comparisons with PIAS and HPCC:We now compare our PPT

with HPCC [25] and PIAS [9]. Fig. 25 shows the FCT statistics across

different flow types for HPCC, PIAS and PPT. We find that PPT

outperforms PIAS in the FCTs across all flow sizes. Specifically, it

reduces the overall average FCT, the average/tail FCT of small flows,

and the average FCT of large flows by 24.6%, 28.6%/46.9%, and 24.2%,

respectively. The reasons for these results are two-fold. First, PIAS’s

rate control is based on DCTCP, which cannot efficiently utilize the

available bandwidth. Second, PIAS’s scheduling can only prioritize

small flows over large ones in later transmission stages, i.e., after

the large flows transmit a significant amount of data. As the second

observation, PPT also performs slightly better than HPCC, with the

overall average FCT, the average/tail FCT of small flows, and the

average FCT of large flows reduced by 4.7%, 20%/38.2%, and 5.3%

respectively. This outcome is mainly because HPCC does not take

advantage of the in-network priorities to schedule flows.

E WORKINGWITH NON-OVERSUBSCRIBED
TOPOLOGY

Existing proactive transports like Homa [32] and Aeolus [17] are

not designed for oversubscribed network, because they assume the

network is fully provisionedwith no congestion in the core network.

To assess if PPT still preserves performance gains in an environment

that is more friendly to existing proactive transports, we simulate

a non-oversubscribed topology. In this topology, there are 9 leaf

switches and 4 spine switches. Each leaf switch is connected to 16

hosts with 10Gbps links and 4 spine switches with 40Gbps links.

We use the web search workload for this experiment. Fig. 26 depicts

the results. From this figure, we observe that PPT achieves the

best performance for both overall flows and large flows, with the

overall average FCT reduced by 19%, 20.8%, 45.9%, 71.1%, and 85.9%

and the average FCT of large flows reduced by 12.8%, 11%, 47.7%,

72.4%, and 88%, compared to NDP, Aeolus, Homa, RC3, and DCTCP,

respectively.
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Figure 27: [Simulation] PPT’s FCT results under different

TCP sender buffer capacity sizes.
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Figure 28: [Simulation] Buffer occupancies under different

ECN marking thresholds.
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Figure 29: [Simulation] Transfer efficiencies under different

ECN marking thresholds.

We further find that PPT still delivers a slightly lower average

FCT of small flows than NDP, Aeolus, and Homa. However, the tail

FCT of small flows achieved by PPT is at most 37.5% worse than

the three proactive transports. The reasons for the results above

are two-fold. First, PPT delays the LCP loop initialization to the

second RTT for identified large flows, thus making small flows

have relatively more bandwidth in the 1st RTT and accordingly

maintaining comparable average FCT of small flows. Second, under

non-oversubscribed topology, congestion occurs primarily at the

last-hop, and proactive transport like Homa can use credit and pre-

cise flow size information to emulate SRPT efficiently. By contrast,

PPT separates HCP and LCP into different priority queues, which

could prioritize HCP packets of identified large flows over LCP

packets of small flows. Worse still, PPT leaves some unidentified

large flows, which could coexist with small flows in higher priority

queues until they are gradually moved to lower priority queues,

thus degrading the tail FCT of small flows.

F SENSITIVITY ANALYSIS

Impact of send buffer: The accuracy of PPT’s large flow iden-

tification relies on having large send buffers. One may question

the impact of send buffer capacity on PPT’s performance. To vali-

date this, we configure multiple buffer sizes ranging from 128KB

to 2G and show the FCT results of PPT in Fig. 27 under the web

search workload at 0.5 load and the oversubscribed topology. When

the buffer size is only 128KB, the average/tail FCT of small flows

achieved by PPT is 0.20/0.48ms, which still lower than the proac-

tive transports (see NDP, Aeolus and Homa results in Fig. 13b and
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Fig. 13c). On the other hand, the overall average FCT and the aver-

age FCT of large flows are 10ms and 20.2ms respectively, which are

slightly higher than those of proactive transports. Once the buffer

size reaches 2MB, both the overall average FCT and the average

FCT of large flows of PPT can fall below those of NDP, Aeolus and

Homa. Note that 2MB is very small as compared to the host memory,

but is large enough for holding most flows as the average flow size

of the web search workload is 1.6MB. Further increasing the send

buffer to 4MB does provide significant performance improvement.

Impact of ECN marking threshold: We first run ns-3 simula-

tions with two senders and one receiver to investigate the impact

of ECN marking threshold on switch buffer occupancies. The bot-

tleneck link capacity is 40Gbps, and the total switch buffer is set to

120KB. Fig. 28 shows the buffer the high-priority queue occupies

compared to the buffer the low-priority queue occupies under dif-

ferent ECN marking thresholds (i.e., 60% and 80% of the total buffer

size). Note here this experiment configures the same ECN marking

threshold for both low-&high-priority control loops. We make the

following findings from this figure. First, PPT requires 20.4%∼21.6%

less switch buffer than RC3. Moreover, the low-priority queue un-

der PPT only occupies 2.6%∼3.1% of the total buffer occupancy,

while RC3’s low-priority queue accounts for 17.4%∼30.2%. Second,

a larger ECN marking threshold makes RC3’s low-priority queue

occupy more buffer, while PPT could make its low-priority queue

maintain relatively low and stable buffer occupancy under differ-

ent ECN marking thresholds. Third, PPT incurs 10.8%∼17.4% more

buffer than DCTCP, while it delivers lower FCT (see §6.1 and §6.2).

We further conduct an experiment to inspect the impact of ECN

marking threshold on PPT’s transfer efficiency. The settings are

the same as the experiment of investigating the impact of ECN

on buffer occupancy. We calculate transfer efficiency as the total

received data bytes over the total sent bytes. The higher the transfer

efficiency, the fewer packet losses. Fig. 29 shows the results. This

figure shows that PPT achieves comparable transfer efficiency with

DCTCP. Compared to RC3, PPT delivers14.6%∼18.4% higher trans-

fer efficiency. On a closer analysis, we find that though the RC3

maintains only a little bit lower transfer efficiency, its low-priority

transfer efficiency is 47.8%∼51.2% lower than PPT. This implies that

in RC3, many low-priority opportunistic packets are dropped and

require the normal DCTCP loop to retransmit. In this case, though

the high-priority control loop’s efficiency may not be affected, a

considerable part of its efficiency is used for filling the hole left by

the low-priority control loop, thus being ineffective in filling the

spare bandwidth left by DCTCP.
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